
Hands-on tinyML
A primer on Neural Networks

Francesco Paissan

University of Trento, Mila - Québec AI Institute

April 16, 2025

francescopaissan.it/tinyml-tutorial

F. Paissan 1/24

https://francescopaissan.it/tinyml-tutorial/

Table of Contents

Overview

Neural Networks

F. Paissan 2/24

Modelling

Inference Learning

F. Paissan 3/24

Modelling

Inference Learning

F. Paissan 4/24

Why care about Neural Networks?

Unless you have been living under a rock... ...you have used neural networks in
your daily life.

Neural networks have applications in all areas of technology. Few examples:

■ Social Networks: Recommender systems (i.e., ‘the algorithm’)

■ Communication: Neural Codecs

■ Transportation: Graph Neural Networks (GMaps for ETA estimation)1

■ Cybersecurity: Anomaly Detection on networks

■ Manifacturing: Predictive Mantainance, Anomaly Detection

1https://arxiv.org/abs/2108.11482
F. Paissan 5/24

https://arxiv.org/abs/2108.11482

Why care about Neural Networks?

Unless you have been living under a rock... ...you have used neural networks in
your daily life.

Neural networks have applications in all areas of technology. Few examples:

■ Social Networks: Recommender systems (i.e., ‘the algorithm’)

■ Communication: Neural Codecs

■ Transportation: Graph Neural Networks (GMaps for ETA estimation)1

■ Cybersecurity: Anomaly Detection on networks

■ Manifacturing: Predictive Mantainance, Anomaly Detection

1https://arxiv.org/abs/2108.11482
F. Paissan 5/24

https://arxiv.org/abs/2108.11482

How is it possible?

Neural networks are very versatile tools. Think of polynomial fits:

2 3 4 5 6 7

Time [s]

0

10

20

30

T
h
ru

st
 [
N

]

Observations

Deg=2

Deg=3

2 3 4 5 6 7

Time [s]

0

10

20

30

S
tu

d
en

t’
s

D
is

tr
ac

ti
on

[S
q
u
ir

re
l
U

n
it
s]

Observations

Deg=2

Deg=3

What changes between these two plots?

*Squirrel Units as in “how often a student gets distracted by a squirrel (real or metaphorical)”.

F. Paissan 6/24

Neural Networks as feature extractors

Neural Networks approximate functions2 between vector spaces. Regardless of the:

■ Units

■ Input and output domains

■ Underlying relationship between input and output (i.e., the groundtruth)

we can design a neural network to extract useful information from the data.

Neural Network Features

2Universal Approximation Theorem
F. Paissan 7/24

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Neural Networks as feature extractors

Neural Networks approximate functions2 between vector spaces. Regardless of the:

■ Units

■ Input and output domains

■ Underlying relationship between input and output (i.e., the groundtruth)

we can design a neural network to extract useful information from the data.

Neural Network Features

2Universal Approximation Theorem
F. Paissan 7/24

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Table of Contents

Overview

Neural Networks

F. Paissan 8/24

What’s inside a neural network?

An ordered set of functions representing layers, evaluated in a cascaded fashion.

Input Layer 1 Layer 2 Output

F. Paissan 9/24

What’s inside a neural network?

An ordered set of functions representing layers, evaluated in a cascaded fashion.

Input Layer 1 Layer 2 Output

Let’s define a neuron Λ : RD → RI . Depending on the dimensionality of the domain and
codomain (D = {d1, d2, . . . , dD}, I = {i1, i2, . . . , iI}), we can define many types of neurons:

■ D = d ∈ N, I = i ∈ N.
Dense layer: y← Λ(x) ≜ xW⊤,W ∈ Ri×d .

x1

x2

y1

y2

y3

W

F. Paissan 9/24

What’s inside a neural network?

An ordered set of functions representing layers, evaluated in a cascaded fashion.

Input Layer 1 Layer 2 Output

Let’s define a neuron Λ : RD → RI . Depending on the dimensionality of the domain and
codomain (D = {d1, d2, . . . , dD}, I = {i1, i2, . . . , iI}), we can define many types of neurons:

■ D = {d1, d2, d3}, dj ∈ N; I = {i1, i2, i3}, ij ∈ N.
Convolutional layer: y← Λ(x) ≜ x ∗W,W ∈ Ri1×d1×k×k .

x, d1 = 1, d2 = d3 = 5

W, k = 3

y

Convolution

F. Paissan 9/24

What’s inside a neural network?

An ordered set of functions representing layers, evaluated in a cascaded fashion.

Input Layer 1 Layer 2 Output

Let’s define a neuron Λ : RD → RI . Depending on the dimensionality of the domain and
codomain (D = {d1, d2, . . . , dD}, I = {i1, i2, . . . , iI}), we can define many types of neurons:

■ D = {d1, d2}, dj ∈ N; I = {i1, i2}, ij ∈ N,Wq ∈ Re×d1 ,Wk ∈ Re×d1 ,Wv ∈ Re×d1 .
Self-Attention layer:

Q← xW⊤
q ,K← xW⊤

k ,V← xW⊤
v ,

y← Ψ(QK⊤)V

We can compose basic layers to create more complex functions. How?

F. Paissan 9/24

Topological structure

Neural networks exploit difference topological patterns. A few examples:

Input Layer 1 Layer 2 OutputFeed-Forward

Input Layer 1 Layer 2 OutputSkip Connection

Input Layer 1 Layer 2 Layer 3Dense Connections

What happens when we use a feed-forward network with linear layers only?

y = Λ2 ◦ Λ1(x) ≜ (xW⊤
1)W

⊤
2 = x(W⊤

1 W
⊤
2) =⇒ y = Λ3(x),W3 = W2W1. (1)

...we get another linear layer. To avoid this, we introduce non-linearities inside the network.

F. Paissan 10/24

Non-linearities

More or less any non-linear function you can think of can be used for this purpose.3

−5 5

5

ReLU

f (x) = max(0, x)

−5 5

−1

1

Tanh

f (x) = tanh(x)

−5 5

1

Sigmoid

σ(x) = 1
1+e−x

−5 5

5

SiLU

f (x) = x · σ(x)

Let’s review some of the most impactful neural networks through these lenses.

3The gradient of this function should be well-behaved, to avoid issues during optimization.
F. Paissan 11/24

Non-linearities

More or less any non-linear function you can think of can be used for this purpose.3

−5 5

5

ReLU

f (x) = max(0, x)

−5 5

−1

1

Tanh

f (x) = tanh(x)

−5 5

1

Sigmoid

σ(x) = 1
1+e−x

−5 5

5

SiLU

f (x) = x · σ(x)

Let’s review some of the most impactful neural networks through these lenses.

3The gradient of this function should be well-behaved, to avoid issues during optimization.
F. Paissan 11/24

A couple of famous convolutional blocks

AlexNet Convolutional Block

Conv

ReLU

Max Pooling

ResNet Convolutional Block

x

Conv

ReLU

Conv

+

ReLU

F. Paissan 12/24

Paissan, Francesco

Modelling

Inference Learning

F. Paissan 13/24

How do we learn?

‘Learning’ refers to the process of optimizing the parameters of each layer inside a neural
network. ...but wait:

What should the network learn?

F. Paissan 14/24

Learning is task-dependent

Depending on what we want to achieve, we should find a way to verify how well the neural
network solves a specific task, i.e. the error/cost/loss function.

Let’s create a simple use case. Let’s define a single-layer neural network as:

ŷ = σ(xW⊤), x, ŷ ∈ R2,W ∈ R2×2, σ(x) ≜
1

1 + exp{−x}
(2)

Looks familiar?

F. Paissan 15/24

Obtaining the data

We observe some data, and want to model it with our neural network.

−2 −1 0 1 2

X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Observed data

We need to define the error. A reasonable choice in the case is mean squared error.4

4Why is MAE a bad idea?
F. Paissan 16/24

Error definition

The error is a function of: the input, the output, and the weights.

L(x, y,W) ≜
1

2
∥σ(xW⊤)− y∥2 = 1

2
∥ŷ − y∥2 (3)

Learning is the process of adapting W to minimize the error. Any ideas on how we can do that?

F. Paissan 17/24

Optimization I: Notes

The optimal weight, W∗, represents the matrix such that∑
(x,y)∈D

L(x, y,W∗) = 0 (4)

I.e., there’s no error in the entire dataset. We can find (or try to find W∗) by taking small
steps towards W∗. Let’s observe that finding W∗ translates into minimizing the error.5

Therefore, we also know that6:

∇L(x, y,W∗) = 0 (5)

If we compute the gradient, and it is not zero, we can do something to improve the model!

5In this case, 0 represents the absolute minimum over the function’s domain.
6Fermat’s Theorem

F. Paissan 18/24

Optimization I: Notes

The optimal weight, W∗, represents the matrix such that∑
(x,y)∈D

L(x, y,W∗) = 0 (4)

I.e., there’s no error in the entire dataset. We can find (or try to find W∗) by taking small
steps towards W∗. Let’s observe that finding W∗ translates into minimizing the error.5

Therefore, we also know that6:

∇L(x, y,W∗) = 0 (5)

If we compute the gradient, and it is not zero, we can do something to improve the model!

5In this case, 0 represents the absolute minimum over the function’s domain.
6Fermat’s Theorem

F. Paissan 18/24

Optimization II: Gradient Descent

Intuition. Let’s change the model in the most useful way:7

Wt+1 ←Wt − η∇L(x, y,Wt) (6)

η impacts the optimization quality.

7Since ∇L represents the direction of steepest descent.
F. Paissan 19/24

Cross-Entropy

For classification, the model learns to predict the categorical distribution over C classes given
an input x:

p(c | x) = exp(ŷc)∑K
k=1 exp(ŷk)

(7)

In this case, cross-entropy is the go-to choice8

L(y, x) = −
∑
c∈C

yc log p(c | x) (8)

8MLE Wiki
F. Paissan 20/24

https://en.wikipedia.org/wiki/Maximum_likelihood_estimation

Fancier loss functions

You can get as fancy as you’d like, depending on the problem formulation.

SimCLR Loss

LMAC-ZS Loss

F. Paissan 21/24

Modelling

Inference Learning

F. Paissan 22/24

What about computational complexity?

We can model the computational complexity based on non-functional constraints:

■ RAM Usage: How much working memory is needed for one inference?

■ FLASH Usage: how many parameters can I store?

■ Latency: How many operations can I perform?9

9This is a soft constraint, we won’t worry about this too much.
F. Paissan 23/24

Let’s try some of this together!

Task definition:

■ CNN on CIFAR10

■ Keep the computational requirements low

■ Let’s target a STM32H735G-DK, at least for simulation

Our requirements:
Available internal RAM for AI: 560 KB | Total internal RAM: 564 KB |

External RAM: 16 MB | Internal flash: 1024 KB | External flash: 64 MB.

F. Paissan 24/24

	Overview
	Neural Networks

