
Hands-on TinyML for IoT, Bringing Intelligence to the Edge

Francesco Paissan, Alberto Ancilotto, Elisabetta Farella

Outline

● Why porting AI algorithms at the edge is important

● Challenges of AI at the edge

● Bringing intelligence to the edge:
○ From the bottom up;
○ From the top down;

● Hands-on tutorials:
○ Neural network design and training;
○ Model conversion;
○ Model deployment

Housekeeping rules

● Keep your mic muted (initially muted by default) unless you are asking
questions

● Q&A - there will be dedicated moment. However, you can also…
- …use the chat (I’ll review and answer questions from time to time)
- …raise your hand (feel free to interrupt particularly during the hands-on sessions)
- …reach out offline at fpaissan@fbk.eu OR @fpaissan_ on X

● Turn on the camera (and the mic, of course!) when asking questions

mailto:fpaissan@fbk.eu

Fondazione Bruno Kessler

PROFILE
● Fondazione Bruno Kessler (FBK) is a not-for-profit public

research center, the result of a history that is more than
half a century old.

MISSION
● FBK aims to excellence in science and technology with

particular emphasis on interdisciplinary approaches and
to the applicative dimension.

E3DA research unit

● AI at the very edge: artificial intelligence
and advanced signal processing on
resource-constrained wireless sensing
platforms (MCU-based end-devices);

● Energy efficient wireless embedded
systems: Wireless Sensor Networks,
Wearable electronics, Internet of
Things;

● Application in HCI, smart cities
(always-on and event-based audio and
vision sensing), rehabilitation,
context-aware scenarios and ambient
intelligence.

Centralized intelligence

Advantages
Computational resources , management of models
and services

Issues
Energy and bandwidth for data transfer , latency , security
and privacy of the data

Moving AI to the edge

Privacy ✅
Bandwidth/Energy/Latency ✅
Resources ❌
Device heterogeneity ❌

Scientific challenges

Edge-devices are typically characterized by:
● Limited computational power (extremely limited in case of micro-controllers)
● Limited memory
● Fixed point representation
● Limited operation per second (GFLOPS – MMAC)
● Limited size -> limited energy budget/battery operated

Edge nodes are not suitable for current AI algorithms and models
Current AI algorithms are not suitable for edge nodes

Resource and Energy Aware AI algorithms

TinyML: how?

Reducing SoTA algorithms:
- Showcases drawbacks of

current techniques;
- Generally focuses on model

compression

Build ad-hoc algorithms for MCUs:
- Typically reduces to building simple

pipelines based on classical ML
algorithms;

- Applications are usually very
specific to their domain;

Target of TinyML

small memory footprint
(KBs - MBs)

Target of TinyML

small memory footprint
(KBs - MBs)

low complexity
 (millions of ops/s)

Target of TinyML

small memory footprint
(KBs - MBs)

low complexity
 (millions of ops/s)

low resolution
 (complexity and RAM)

Target of TinyML

small memory footprint
(KBs - MBs)

low complexity
 (millions of ops/s)

low working memory
 (KBs)

low resolution
 (complexity and RAM)

Reducing SoTA deep learning algorithms
Distillation, pruning, (quantization)

Knowledge distillation
20

15

Knowledge

Teacher

Student Softmax output of the teacher model

Soft labels (as opposed to hard labels)

● Exploits knowledge from pre-trained,
big neural network to facilitate the task
of learning;

● Generally achieves better performance
wrt to training from scratch;

Knowledge Distillation – Student Teacher

Probability distribution of the classes estimated by the
Teacher model

Knowledge Distillation – Student Teacher

Probability distribution of the classes estimated by the
Teacher model

Knowledge Distillation – Student Teacher

Probability distribution of the classes estimated by the
Teacher mode

Knowledge Distillation – Student Teacher

Probability distribution of the classes estimated by the
Teacher mode

 Output of the student network for class i

Hard labels

Knowledge Distillation – Student Teacher

Feature distillation

Knowledge Distillation – Student Teacher

Feature distillation

Embedding similarity loss

Euclidean distance
Cosine similarity
….
Etc.

● Large varieties of distillation strategies have been introduced at different levels and for different architectures and tasks;

● Important: KD requires training data and the training process, thus cannot be applied as a post-hoc complexity reduction
technique;

Knowledge Distillation – Student Teacher

Gou, J., Yu, B., Maybank, S.J. et al.
Knowledge Distillation: A Survey. Int J
Comput Vis 129, 1789–1819 (2021).
https://doi.org/10.1007/s11263-021-014
53-z

Gou, J., Yu, B., Maybank, S.J. et al. Knowledge Distillation: A Survey. Int J Comput Vis 129, 1789–1819 (2021). https://doi.org/10.1007/s11263-021-01453-z

A. Brutti, F. Paissan, A. Ancilotto and E. Farella, "Optimizing PhiNet architectures for the detection of urban sounds on low-end devices," EUSIPCO 2022

KD Example: Sound event detection

G. Cerutti, et al., "Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms", IEEE Journal on Selected Topics on Signal Processing, 2020

● Audio processing task, used in smart cities applications and more;
● Detects audio events from monaural audio signals in real-time;

KD for sound event detection

STM32L496ZG
1MB flash
320KB RAM
100 MOPS
10 mW

VGGish Proposed

#Params ~72.1M ~18.0M (4x)

#Ops ~1.72G ~608M

Accuracy (US8k) 75% 70%

G. Cerutti, et al., "Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms", IEEE Journal on Selected Topics on Signal Processing, 2020

Reducing SoTA deep learning algorithms
Distillation, pruning, (quantization)

Pruning

Learning from one-hot hard-labels is hard

We need large neural models

Neural models are redundant

Not all weights contribute in the
same way

Zeroing some (the smallest)
parameters

Pruning

Pruning

Structured
Block of parameters
(i.e.) rows of W

Unstructured
Zeroing sparse
parameters

Soft
Zeroed weights can be
restored

Hard
Zeroed weights cannot be
restored

Post Training
Pruning applied on
a trained model

Training
Pruning is performed
during training

Pruning – post training

Pruning during training

 LayerDrop (for Transfomer Models)

Structured drop out
� Drop layers or group of layers during

training

� In inference the model is robust to
layer removal

Not differentiable

Pruning: example of LayerDrop for ASR

WavLM-Large pretrained model with 24 encoder layers

• WER on Librispeech
• Random layer drop of a model trained with LayerDrop
• Finetuning of the model after layer removal

Structured hard layer pruning

Structured soft layer pruning

Pruning: final remarks

• Zeroing parameters does not reduce memory footprint or flops:
zeros have to be stored and processed

• Only the actual implementation of the model skipping the zeroed
connections will reduce the memory footprint and the flops

• Unstructured pruning sparsifies the matrices
This could allow applying efficient methods for sparse matrices

A. Ancilotto, F. Paissan and E. Farella "XiNet-pose: Extremely lightweight pose detection for microcontrollers”

Build ad-hoc algorithms for MCUs and inference engines

Building platform-, application-specific algorithms

● Requires a different skill set:
- knowledge of bare-metal programming;
- Classical machine learning, computer vision and signal processing techniques;

● Usually, these solutions don’t generalize to new application domains and hardware;
● Exploit specialized computing platforms, smart vision sensors to pre-process the images and reduce

redundancy in the data, thus the amount of processing time.

A. Ancilotto, F. Paissan, E. Farella “On the Role of Smart Vision Sensors in Energy-Efficient Computer Vision at the Edge”, Accepted at IEEE PerconAI Workshop 2022

People/car classification using low-power SVS

F. Paissan, G. Cerutti, M. Gottardi, E. Farella “People/car classification using an ultra-low-power smart vision sensor”, IEEE IWASI 2019

Blob detection

1. Border following algorithm [1]
2. Detect contours with hierarchical structure;
3. Creates bounding boxes;
4. For each blob:

- Compute statistical features of the bounding
box (area, image moments);

5. Classify bounding boxes with an SVM;

[1] Suzuki, et al. Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)

Dil

[1]

Blob detection

1. Border following algorithm [1]
2. Detect contours with hierarchical structure;
3. Creates bounding boxes;
4. For each blob:

- Compute statistical features of the bounding
box (area, image moments);

5. Classify bounding boxes with an SVM;

Dil

[1]

[1] Suzuki, et al. Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)

Build ad-hoc algorithms for MCUs and inference engines

● Supports fewer operations;
● Harder to run with custom neural networks;

Custom inference engines

● Specialized solutions for specific hardware platforms;
● Outperforms common toolchains for running NNs on MCUs;

J. Lin et al. “MCUNet: Tiny Deep Learning on IoT Devices”, NeurIPS 2020

● Generally more “elastic”: can be adapted to
different application domains (audio, video,
multimodal);

● Achieves good performance by exploiting a
bigger network;

Reducing SoTA

● Can be more computationally efficient, as the
are super specific on a single application and
device;

Ad-hoc algorithms

● Generally comes with a computational
overhead given by the deployment toolchains;

● Is not always an option and is not guaranteed
to work;

● It is too device-dependent and
application-specific;

● Comes with all the limitations of classical ML
algorithms;

Toward tinyML

Specialize solutions for each device ✅
Scales to different tasks ✅
Runs on low resources ✅

Putting it all together…

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International conference on machine learning. PMLR, 2019.

PhiNets

What?
- Backbone family that exploit HAS paradigm;
- Based on slightly modified inverted residual blocks;

Goal and Target
- Designed and optimized for multimedia analytics at the edge;
- Has advanced scalability principles to comply with hardware varying

constraints;

Paissan, Francesco, Alberto Ancilotto, and Elisabetta Farella. "PhiNets: a scalable backbone for low-power AI at the edge." ACM TECS

α sets number of MAC
t0 sets RAM usage

β sets FLASH usage

Expansion Convolution Depthwise Convolution Projection Convolution

Squeeze and Excite

PhiNets convolutional block
Three parameters:

1. Params = f (α, β, t0)
RAM = g (α, t0)
MAC = h (α, β, t0)

2. α = f (Params, RAM, MAC)
β = g (Params, RAM, MAC)
t0 = h (Params, RAM, MAC)

3. Solve for
(Params, RAM, MAC)
of target hardware

Hardware aware scaling

Hardware aware scaling

● One-shot network scaling that enables to run the best

performing network on a target platform;

● Derive resources needed from network parameters;

● Invert equations to find network hyperparameters;

45

- Flash: 1 MB
- RAM: 392 KB
- MACC: 63 M

- α: 1.0
- β: 0.66
- t0: 4.0

MCU specs

NET parameters

Other examples of MCU applications…

O
rig

in
al

A
nonym

ized face

Running on:
- 984 K parameters
- 62 M MACC
- 392 KB RAM
- 28 mJ / frame on K210 @ 9fps

Video anonymizationObject detection and tracking

Running on:
- < 2MB of FLASH
- < 1MB of RAM
- power requirements in the order of 10 mW

And many more…

Hands-on 1: Designing and training NNs

Hands-on 2: Converting and deploying NNs

