y "\ IEEE World Forum i
o' "\\‘ on Internet of Things

Hands-on TinyML for loT, Bringing Intelligence to the Edge

Francesco Paissan, Alberto Ancilotto, Elisabetta Farella
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e Why porting Al algorithms at the edge is important
e Challenges of Al at the edge

e Bringing intelligence to the edge:
o From the bottom up;
o From the top down;

e Hands-on tutorials:
o Neural network design and training;
o Model conversion;
o Model deployment
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Housekeeping rules

e Keep your mic muted (initially muted by default) unless you are asking }!{;

questions

e Q&A -there will be dedicated moment. However, you can also...

- ..use the chat (I'll review and answer questions from time to time)
- ..raise your hand (feel free to interrupt particularly during the hands-on sessions)
- ..reach out offline at fpaissan@fbk.eu OR @fpaissan_ on X

e Turn onthe camera (and the mic, of coursel) when asking questions
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Fondazione Bruno Kessler

PROFILE
e Fondazione Bruno Kessler (FBK) is a not-for-profit public ey
research center, the result of a history that is more than
half a century old.

MISSION
e FBK aims to excellence in science and technology with
particular emphasis on interdisciplinary approaches and 3,500sqm

labs for scientific research

to the applicative dimension. 230,000
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E3DA research unit

Al at the very edge: artificial intelligence
and advanced signal processing on
resource-constrained wireless sensing
platforms (MCU-based end-devices);
Energy efficient wireless embedded
systems: Wireless Sensor Networks,
Wearable electronics, Internet of
Things;

Application in HCI, smart cities
(always-on and event-based audio and
vision sensing), rehabilitation,
context-aware scenarios and ambient
intelligence.
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Anchor nodes

Audio event detection and
signal processing at the
edge

Low-power
computer vision

ThingsBoard
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Mobile proximity
detection
(wearables)

T
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Centralized intelligence
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Advantages Issues
Computational resources, management of models Energy and bandwidth for data transfer, latency, security
and services and privacy of the data
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Moving Al to the edge
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Privacy
Bandwidth/Energy/Latency
Resources X

Device heterogeneity x
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Scientific challenges

Q%

Edge-devices are typically characterized by:

Limited computational power (extremely limited in case of micro-controllers)
Limited memory

Fixed point representation

Limited operation per second (GFLOPS — MMAC)

Limited size -> limited energy budget/battery operated

$

Edge nodes are not suitable for current Al algorithms and models
Current Al algorithms are not suitable for edge nodes

$

Resource and Energy Aware Al algorithms
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TinyML: how?

- @

Reducing SoTA algorithms:

Showcases drawbacks of
current techniques;
Generally focuses on model
compression
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Build ad-hoc algorithms for MCUs:

- Typically reduces to building simple
pipelines based on classical ML
algorithms;

- Applications are usually very
specific to their domain;
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Target of TinyML

small memory footprint
(KBs - MBs)




Target of TinyML

small memory footprint
(KBs - MBs)
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low complexity

(millions of ops/s)




Target of TinyML

small memory footprint
(KBs - MBs)

low resolution
(complexity and RAM)

low complexity

(millions of ops/s)
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Target of TinyML

small memory footprint
(KBs - MBs)

low resolution
(complexity and RAM)
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low complexity

(millions of ops/s)

low working memory
(KBs)




e E3DA %, \ IEEE World Forum
. ; X 2%

Y on Internet of Things
(28 1

Reducing SoTA deep learning algorithms

Distillation, pruning, (quantization)




Knowledge distillation

Distilling the Knowledge in a Neural Network

(9]
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N Geoffrey Hinton"' Oriol Vinyals' Jeff Dean

Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View

geoffhinton@google.com vinyals@google.com jeff@google.com
Knowledge

N

Teacher

s exp(zi/T)
b2 exp(z/T)

Student

Soft labels (as opposed to hard labels)

Softmax output of the teacher model
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Exploits knowledge from pre-trained,
big neural network to facilitate the task
of learning;

Generally achieves better performance
wrt to training from scratch;
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Knowledge Distillation — Student Teacher

Probability distribution of the classes estimated by the
Teacher model
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Knowledge Distillation — Student Teacher ’

)

Probability distribution of the classes estimated by the
Teacher model
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Knowledge Distillation — Student Teacher

Probability distribution of the classes estimated by the

Teacher mode

Kullbach Leibler divergence
Lo =) ) ailog(z) /log(a)
Cross entropy

Lgp = Z Z q; log(z;)
n i
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Knowledge Distillation — Student Teacher

q; Probability distribution of the classes estimated by the
Teacher mode

Z; Qutput of the student network for class i

Kullbach Leibler divergence
L= Z Z q:10g(z) /10g(q;)
Cross entropy Hard labels

L= zz q;10g(z;)
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Knowledge Distillation — Student Teacher

Feature distillation
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Knowledge Distillation — Student Teacher

Embedding similarity loss
N
n=1

Euclidean distance

Cosine similarity

Feature distillation
Etc.

- I L= 22 q; lOg(Zi) + a22i=y + ﬁLe
n i

n



Gou, J., Yu, B., Maybank, S.J. et al. "=\ IEEE World Forum

Knowledge Distillation: A Survey. Int J 0:0",“\ on Internet of Things
Comput Vis 129,1789-1819 (2021). . 2%
https;//doi.org/10.1007/s11263-021:014gtioN — Student Teacher

SicF7/

® |arge varieties of distillation strategies have been introduced at different levels and for different architectures and tasks;

® Important: KD requires training data and the training process, thus cannot be applied as a post-hoc complexity reduction
technique;

Knowledge Distillation: A Survey

Jianping Gou' - Baosheng Yu ! . Stephen J. Maybank ? - Dacheng Tao'

Gou, J., Yu, B., Maybank, S.J. et al. Knowledge Distillation: A Survey. Int J Comput Vis 129, 1789-1819 (2021). https://doi.org/10.1007/s11263-021-01453-z
D
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KD Example: Sound event detection

e Audio processing task, used in smart cities applications and more;
e Detects audio events from monaural audio signals in real-time;

DCASE2023 Challenge

IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events

15 March - 1 July 2023

uonﬂﬂ”uuﬂuuuﬂoﬂ”ﬂnuﬂﬂﬂ””ﬂnuuoﬂﬂﬂnooﬂu=HDDHDDDHHHDGD

Input

Audio

Output
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Sound Event
Detection System

S 0 G
D .o

(carpassingy_) (

)

time

Each event with sound class label and
start/end timestamps

A. Brutti, F. Paissan, A. Ancilotto and E. Farella, "Optimizing PhiNet architectures for the detection of urban sounds on low-end devices," EUSIPCO 2022
G. Cerutti, et al., "Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms", IEEE Journal on Selected Topics on Signal Processing, 2020
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KD for sound event detection

X\

L 4

Tiny SED
a acqui/;il':idolr? :;i%?iblEMs
pc microphones g'
Classifier STM32L496Z2G
1MB flash
) v ) 320KB RAM
4—-'E Euclidian Distance l <Lr—[ Cross Entropy ] QL{ Cross Entropy ] 1 00 MOPS
1 10 mW
Student

Feature Classifier

extractor

Pe bz

#Params ~72.1M ~18.0M (4x)
#0ps ~1.72G ~608M
Accuracy (US8k) 75% 70%

G. Cerutti, et al., "Compact recurrent neural networks for acoustic event detection on low-energy low-complexity platforms", IEEE Journal on Selected Topics on Signal Processing, 2020
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Reducing SoTA deep learning algorithms
Distillation, pruning, (quantization)
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Pruning

Learning from one-hot hard-labels is hard

We need large neural models

Neural models are redundant
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Not all weights contribute in the
same way

y=xW+b

Zeroing some (the smallest)
parameters

J=xW+hb=y
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Pruning
Structured Soft

Block of parameters

Zeroed weights can be
(i.e.) rows of W ’ restored

Unst.ructured ‘ , Hard
Zeroing sparse Zeroed weights cannot be
parameters ’ ' restored

Post Training Training

Pruning applied on Pruning is performed

a trained model during training
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Pruning — post training

\)
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Naive unstructured pruning
In inference

1) Wi j =0lle] < 6

Set to O all parameters smaller that a given threshold
6: given the target reduction to be achieved

2) Incrementally zeroing parameters from the
smallest as long as the target performance is
maintained
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Pruning during training
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LayerDrop (for Transfomer Models)

Soft/Hard pruning during training

L= Z c log(p(x)) +

Not differentiable

The trick is how to approximate the non
differentiable term

Dynamic management of the batch size

Dynamic hard pruning of Neural Networks at
the edge of the internet

Structured drop out
[0 Drop layers or group of layers during

training
In inference the model is robust to

layer removal
REDUCING TRANSFORMER DEPTH ON DEMAND WITH

STRUCTURED DROPOUT

Edouard Grave
Facebook Al Research
egrave@fb.com

Angela Fan Armand Joulin
Facebook Al Research/LORIA Facebook Al Research
angelafan@fb.com ajoulin@fb.com

Lorenzo Valerio ® 2 =, Franco Maria Nardini * =, Andrea Passarella ° =, Raffaele Perego *

on Internet of Things
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Pruning: example of LayerDrop for ASR

WaVL M - La rg e p retra I n ed m Od el Wlth 2 4 en COd er Iaye rs FINE-TUNING STRATEGIES FOR FASTER INFERENCE USING SPEECH

SELF-SUPERVISED MODELS: A COMPARATIVE STUDY

H H Salah Zaiem*~ Robin Algayres® Titouan Parcollet Slim Essid* Mirco Ravanelli™
«  WER on Librispeech 5

- Random layer drop of a model trained with LayerDrop e il e i,

i i Mila-Quebec Al Institute, Université de Montréal, Concordia University, Canada
« Finetuning of the model after layer removal RO HIR g . ty

Technique WER| GPU(s) CPU(s) WER-LM| GPU-LM(s) CPU-LM(s) MACs(G)
Baseline Full Model 409 134 1121 331 152 1128 386.53
Layer Drop Drop Prob
05 1128 9 721 5.89 156 776 244.19
: 04 8.32 102 816 458 145 844 272.28
Structured soft layer pruning o s 5 i s s i ey
025 591 113 932 372 148 950 314.24
Layer Removal Num. Kept Layers
} 12 1439 93 726 8.64 127 739 236.64
Structured hard layer pruning 16 816 109 852 5.53 131 861 286.60
20 5.14 117 988 362 142 989 336.57
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Pruning: final remarks

« Zeroing parameters does not reduce memory footprint or flops:
zeros have to be stored and processed

* Only the actual implementation of the model skipping the zeroed
connections will reduce the memory footprint and the flops

* Unstructured pruning sparsifies the matrices
This could allow applying efficient methods for sparse matrices

A. Ancilotto, F. Paissan and E. Farella "XiNet-pose: Extremely lightweight pose detection for microcontrollers”
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Build ad-hoc algorithms for MCUs and inference engines
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Building platform-, application-specific algorithms

® Requires a different skill set:

knowledge of bare-metal programming;

Classical machine learning, computer vision and signal processing techniques;

e Usually, these solutions don’t generalize to new application domains and hardware;

e Exploit specialized computing platforms, smart vision sensors to pre-process the images and reduce

redundancy in the data, thus the amount of processing time.

8bit 32bit Multicore Accelerators  Neuro-Inspired

core

CIm

memory

Biomedical Flash&  BT& auxiiaryMCU  Power

SD.Card  BTLE  (notused) Management

A. Ancilotto, F. Paissan, E. Farella “On the Role of Smart Vision Sensors in Energy-Efficient Computer Vision at the Edge”, Accepted at IEEE PerconAl Workshop 2022
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People/car classification using low-power SVS

Features P/C

F. Paissan, G. Cerutti, M. Gottardi, E. Farella “People/car classification using an ultra-low-power smart vision sensor”, IEEE IWASI 2019
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Blob detection

Border following algorithm [1]
Detect contours with hierarchical structure;
Creates bounding boxes;
For each blob:
- Compute statistical features of the bounding
box (area, image moments);
5. Classify bounding boxes with an SVM,;

> W

[1] Suzuki, et al. Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)
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Blob detection

Border following algorithm [1]
Detect contours with hierarchical structure;
Creates bounding boxes;
For each blob:
- Compute statistical features of the bounding
box (area, image moments);
5. Classify bounding boxes with an SVM,;

> W

Sub-mW Keyword Spotting on an MCU: Analog
Binary Feature Extraction and Binary Neural Networks

Gianmarco Cerutti, Lukas Cavigelli, Renzo Andri, Michele Magno, Elisabetta Farella, Luca Benini

[1] Suzuki, et al. Topological Structural Analysis of Digitized Binary Images by Border Following. CVGIP 30 1, pp 32-46 (1985)
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Build ad-hoc algorithms for MCUs and inference engines
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Custom inference engines

Specialized solutions for specific hardware platforms;

Outperforms common toolchains for running NNs on MCUs;
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MCUNet: Tiny Deep Learning on IoT Devices

Supports fewer operations;
Harder to run with custom neural networks;

Latency (ms)]

7] TF-Lite Micro [ CMSIS-NN

J. Lin et al. “MCUNet: Tiny Deep Learning on loT Devices”, NeurlPS 2020

JiLin’ Wei-Ming Chen’? YujunLin’ John Cohn® Chuang Gan® Song Han'
IMIT  “National Taiwan University *MIT-IBM Watson AI Lab
https://tinyml.mit.edu

Sfps  mbv2-320kB

777777777777777 N N/t
! . write back
P 1 B = I D -
1
.............. Lo
(Peak Mem: 2N) (Peak Mem: N+1)
Input activation Output activation Input/output activation Temp buffer

(a) Depth-wise convolution (b) In-place depth-wise convolution
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Toward tinyML

Reducing SoTA

® Generally more “elastic”: can be adapted to
different application domains (audio, video,
multimodal);

e Achieves good performance by exploiting a
bigger network;
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Ad-hoc algorithms

Can be more computationally efficient, as the
are super specific on a single application and
device;

e Generally comes with a computational
overhead given by the deployment toolchains;

e |s not always an option and is not guaranteed
to work;

It is too device-dependent and
application-specific;

Comes with all the limitations of classical ML
algorithms;
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Putting it all together...

Specialize solutions for each device
Scales to different tasks
Runs on low resources



EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan! Quoc V. Le'!

#channels )
jm Ak R wider - .

e i e i s

deeper

= ; j

— E i

----layer_i

"+ higher
i resolution

e S o o o o e e o

} resolution HxW

'
'
'
'

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International conference on machine learning. PMLR, 2019.
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PhiNets

L]

What?
- Backbone family that exploit HAS paradigm;

- Based on slightly modified inverted residual blocks;

Goal and Target

Designed and optimized for multimedia analytics at the edge;

Has advanced scalability principles to comply with hardware varying

constraints;

PhiNets: a scalable backbone for low-power Al at the edge

FRANCESCO PAISSAN*, ALBERTO ANCILOTTO", and ELISABETTA FARELLA, E3DA Unit,
Digital Society Center - Fondazione Bruno Kessler (FBK)

Paissan, Francesco, Alberto Ancilotto, and Elisabetta Farella. "PhiNets: a scalable backbone for low-power Al at the edge." ACM TECS
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PhiNets convolutional block

Three parameters:

a
tO

B

sets number of MAC
sets RAM usage

sets FLASH usage

Expansion Convolution Depthwise Convolution Projection Convolution

9

A1 [

9

Squeeze and Excite

® Skip connection:

24 .- (ﬂ—l)N+B

|

24-a Xto[ B

Add




Hardware aware scaling

N
Params = 2[2(02 tp - CE)+ (a-tg-Cp- K?)
B=1
JN'
MAC =) (Wg-Hp)[2(a® - tp- Cf) + (a-tp - Cp- K?)]
B=1
RAM = Hy x Wy x (to + a - tg + Co)

f (Params, RAM, MAC)
g (Params, RAM, MAC)
h (Params, RAM, MAC)

Solve for
(Params, RAM, MAC)

of target hardware
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Hardware aware scaling MCU specs

Flash: 1MB
RAM: 392 KB

MACC: 63 M

® One-shot network scaling that enables to run the best
performing network on a target platform;

Derive resources needed from network parameters; ‘

Invert equations to find network hyperparameters;

NET parameters

45
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Other examples of MCU applications...

Object detection and tracking

st |
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o
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g 3
S5 N
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®
Running on: Running on:
- < 2MB of FLASH - 984 K parameters
- <1MB of RAM - 62 M MACC
- power requirements in the order of 10 mW - 392 KB RAM

- 28 mJ / frame on K210 @ 9fps

And many more...



Hands-on 1: Designing and training NNs




Hands-on 2: Converting and deploying NNs




