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The Five (-1) Ws of tinyML

What?

¢ 3 fast-growing subfield of machine learning targeting
on-device and near-sensor processing;
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e many practical benefits (e.g. bandwidth reduction,
infrastructure sustainability, scalability);

¢ privacy by design: enable processing on-device, thus sensitive
data is never leaked;
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The Five (-1) Ws of tinyML

What?

¢ 3 fast-growing subfield of machine learning targeting
on-device and near-sensor processing;

Why?
e many practical benefits (e.g. bandwidth reduction,
infrastructure sustainability, scalability);

¢ privacy by design: enable processing on-device, thus sensitive
data is never leaked;

When?

¢ not clear, it was a continuous process, sometimes driven by
necessity...
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(tiny)Al researchers:

e come up with novel ML algorithms to compress and simplify
NN model;

e generally approach tinyML as a ML problem;
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(tiny)Al researchers:

e come up with novel ML algorithms to compress and simplify
NN model;

e generally approach tinyML as a ML problem;

(Al)Embedded engineers:

e design custom NN accelerator and neuromorphic processors
to speed up NN inference;

e approach tinyML as an engineering problem;
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(tiny)Al researchers:

e come up with novel ML algorithms to compress and simplify
NN model;

e generally approach tinyML as a ML problem;
(Al)Embedded engineers:
e design custom NN accelerator and neuromorphic processors
to speed up NN inference;

e approach tinyML as an engineering problem;

But there's stuff also in the gray area...
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Challenges of tinyML?

n00 x

-1-1-) -—_p
WORKSTATION PC/SBC MCU
RAM: 10-100 GB RAM: 1-10 GB RAM: 10s - 100s of KBs
Storage: 10s of TB Storage: 10-100 GB Storage: KBs - MBs
Speed: 100 Billions of ops/s Speed: 1-10 Billions of ops/s Speed: Millions of ops/s
+10 +10 000
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Target platforms

microcontrollers, SBC,

neuromorphic processors, ...
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Target platforms

small parameter memory available few operations per second

(kB - MB) (million ops/s)

microcontrollers, SBC,

small working memory neuromorphic processors, ... limited operations support

(kB - MB) (generally optimized for CNNs)
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@® Neural Network design
Rise and development of CNNs
tinyML-first CNNs
Hardware-Aware Scaling
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A quick peek at the literature
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e ground-breaking CNN from 2012 was
the first one to get good results on
ImageNet;

e composed by a sequence of
convolutional blocks, with varying
configurations;

520]q AUOD

= —

Krizhevsky, Sutskever, and Hinton, “ImageNet classification with deep convolutional neural networks":
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A quick peek at the literature
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e improves the performance by
enabling deeper networks via skip
connections;

® again, is composed by a sequence
of convolutional blocks, called
residual blocks;

e residual blocks follow a
wide/narrow/wide structure in the
number of channels;

identity

Wightman, Touvron, and J'egou, “ResNet strikes back: An improved training procedurein timm”.
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ResBlock variants

input, D-dim

3x3, D-dim
3x3, D-dim

input, D-dim




ResBlock variants

Wide-narrow-wide channel structure

input, D-dim

3x3, D-dim
3x3, D-dim

input, D-dim
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A quick peek at the literature
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MobileNet

e tries to improve CNN efficiency by proposing the inverted
residual block;

Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision‘Applications”.
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MobileNet

e tries to improve CNN efficiency by proposing the inverted
residual block;

e differently from a ResBlock, this uses a narrow/wide/narrow
structure in the number of channels;

Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision‘Applications”.
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MobileNet

e tries to improve CNN efficiency by proposing the inverted
residual block;

e differently from a ResBlock, this uses a narrow/wide/narrow
structure in the number of channels;

e additionally, groups are used inside the convolutions to reduce
the computational complexity (depthwise convolutions);

Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision‘Applications”.

Francesco Paissan (FBK) November 28, 2023 15747



Inverted Convolutional Block

add 6C | Conv 1x1, Linear
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(b) Inverted residual block
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Inverted Convolutional Block

Wide-narrow-wide

add 6C | Conv 1x1, Linear

6 C | Conv 1x1, Linear
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Inverted Convolutional Block

Wide-narrow-wide Narrow-wide-narrow
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Just for comparison...

As of MobilNetv3 (Nov. 2019)...

Accuracy vs MAdds vs model size
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A quick peek at the literature
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EfficientNet

e focuses on how we ‘should’ be scaling CNNs to obtain optimal
performance;

¢ introduces the concept of compound scaling (i.e. scaling all
dimensions is better than one dimension at a time);

- wider

#channels ‘ I —
_________ . b wider - -
doeper ==
|
deeper
- - layer_i
- higher mgner
'} resolution HxW T i _resolution resolution

(a) baseline (b) width scaling (c) depth scaling (d) resolution scaling (€) compound scaling

Tan and Le, “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks".
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Shortcomings of mainstream CNNs

¢ these neural networks are too demanding to run on edge
devices and/or compromise performance too much trying to
fit;
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Shortcomings of mainstream CNNs

¢ these neural networks are too demanding to run on edge
devices and/or compromise performance too much trying to
fit;

e edge devices have different capabilities conf blocks cannot
exploit;
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Shortcomings of mainstream CNNSs

¢ these neural networks are too demanding to run on edge
devices and/or compromise performance too much trying to
fit;

e edge devices have different capabilities conf blocks cannot
exploit;

e compound scaling changes all the computational complexities
in a coupled way;
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Ideal CNN for edge processing

e aneural network that can scale to low computational
complexity (< 1 MB of FLASH, < 1 MB of RAM);

® a convolutional block that is designed to exploit the available
resources maximally;

e a scaling strategy that allows fitting neural networks on
different edge platforms based on the applications scenarios;
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¢ based on inverted residual blocks, modified to decouple the
computational resources;

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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¢ based on inverted residual blocks, modified to decouple the
computational resources;

e designed and optimized for multimedia analytics at the edge
(audio-video);

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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¢ based on inverted residual blocks, modified to decouple the
computational resources;

e designed and optimized for multimedia analytics at the edge
(audio-video);

e controls RAM (), FLASH (3) and operations («) using three
hyperparamters;

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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PhiNets convolutional block

Narrow-wide-narrow structure for the number of channels...

Expansion Convolution Depthwise Convolution Squeeze and excitation block Projection Convolution

Skip connection

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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The sequence of PhiNets conv blocks

E ion |
M~ / xpansion layer R —

i

Expansion
factor ¢
0

[ [+

connection

L —

Bottleneck layer

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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https://github.com/micromind-toolkit/micromind/

The sequence of PhiNets conv blocks

E ion |
M~ / xpansion layer R —

i

Expansion
factor ¢
0

[ [+

connection

L —

Bottleneck layer

from micromind.networks import PhiNet

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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Designing an optimized convolutional block

¢ PhiNets are designed based on indirect efficiency metrics,
thus could be an ideal version of edge CNNs;
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Designing an optimized convolutional block

¢ PhiNets are designed based on indirect efficiency metrics,
thus could be an ideal version of edge CNNs;

e what happens if we try to break free of the common standards
for convolutional block design and investigate from first

principles?
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Designing an optimized convolutional block

¢ PhiNets are designed based on indirect efficiency metrics,
thus could be an ideal version of edge CNNs;

e what happens if we try to break free of the common standards
for convolutional block design and investigate from first

principles?

Let's see...
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Formal definition of efficiency

Definition 2.1

We assessed the actual efficiency of each operator (1,,) by
calculating the ratio between the energy needed for a standard
convolution (Es) and the energy of the chosen operator (Ey,) to
perform an equivalent number of MACs.

Eg

Nop = Eop

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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Empirical evaluation of CNN operators...

Efficiency [%]

120

Efficiency of common operators on tested platforms

100

Conv2d Pointwise
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Empirical evaluation of CNN operators...

Efficiency [%]

120

Efficiency of common operators on tested platforms

100

Conv2d Pointwise Depthwise

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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Empirical evaluation of CNN operators...

Efficiency of common operators on tested platforms

W ST STM32L452
ST STM32H743
I H mmm Nordic nRF52840
mmm Greenwaves GAP8
I e Kendryte K210
m== Raspberry Pi 3

i Raspberry Pi 4
I R

Efficiency [%]
a
3

Conv2d Pointwise Depthwise Group/Patch Transposed Nearest Neighbor  Bilinear Upsample Depth to Space

e this suggests that standard convolutions (AlexNet-style) are, on
average, more efficient than other variants;

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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Empirical evaluation of CNN operators...

Efficiency of common operators on tested platforms

ST STM32L452
ST STM32H743

—‘ mem Nordic nRF52840

s Greenwaves GAP8

e Kendryte K210

I mmm Raspberry Pi 3
‘ -I Raspberry Pi 4

Efficiency [%]

Conv2d Pointwise Depthwise Group/Patch Transposed Nearest Neighbor  Bilinear Upsample Depth to Space

e this suggests that standard convolutions (AlexNet-style) are, on
average, more efficient than other variants;

¢ but how do we exploit them with low parameter memory?

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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XiNet convolutional block

Attention Module

Broadcast Skip
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XiNet convolutional block

Wide-narrow-wide structure for channels, and much more...

Attention Module

Pointwise

Pointwise aCour Conv2D

aCour

Compression
Convolution

Elementwise

XiNet Conv Bloc

Pointwise
+

Avg Pool

Broadcast Skip

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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Skip connections and attention block

Skip connection importance per block

a0 012345

8
o
-

°
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Importance [%]
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o~ > 2 > s 0]
W 0T ot et ot gt

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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Skip connections and attention block

Skip connection importance per block

sujl —
0

o o o
T A

]
_

°
-

Importance [%]
o ¥ o

o~ > 2 > s 0]
W 0T ot et ot gt

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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e composed by a sequence of XiNet convolutional blocks;

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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https://github.com/micromind-toolkit/micromind/

e composed by a sequence of XiNet convolutional blocks;

e similarly to PhiNets, its computational complexity is controlled
using three hyperparameters («, v, 3);

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
Francesco Paissan (FBK) November 28, 2023 31/47


https://github.com/micromind-toolkit/micromind/

e composed by a sequence of XiNet convolutional blocks;

e similarly to PhiNets, its computational complexity is controlled
using three hyperparameters («, v, 3);

e designed based on the empirical benchmark of the different
operators to be very efficient;

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
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e composed by a sequence of XiNet convolutional blocks;

e similarly to PhiNets, its computational complexity is controlled
using three hyperparameters («, v, 3);

e designed based on the empirical benchmark of the different
operators to be very efficient;

from micromind.networks import XiNet

Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for tinyML".
Francesco Paissan (FBK) November 28, 2023 31/47


https://github.com/micromind-toolkit/micromind/

Hardware-aware scaling

¢ scaling strategy that exploits the advanced PhiNets and XiNet
architectures;

¢ helps deploy CNNs on a wide variety of edge platforms via its
one-shot network optimization procedure;

¢ inverts the mapping between computational complexity
and hyperparameters so that it can be solved with a
mathematical programming toolkit for specific computational
requirements;

Paissan, Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Abat the‘Edge”.
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© Some applications...
YOLO-based
Zero-shot audio classification
micromind
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You Only Look Once (YOLO)

e originally proposed as an object detection pipeline;

e well known for its good performance/complexity tradeoff;

e mainly related to its ability to detect objects using only one
inference step (no region proposal networks, etc...);

e recently extended to support image segmentation, keypoint
detection/pose estimation;
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YOLO Architecture

INPUT | DETECTIONS

N oy | i | &1’;«!

Conv Conv Conv Conv Conv Conv Conv Conv | SPP |Conv Conv Conv Conv Conv | |
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YOLO Architecture

DETECTIONS

)"

INPUT i

Conv Conv Conv Conv Conv Conv Conv Conv | SPP |Conv Conv Conv Conv Conv
Block Block Block Block Block Block Block Block | Neck |Block Block Block Block Block

Feature extractor - DARKNET
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'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
a

Detection head
Cony —Conv —»Conv —»
Conv

B = cat —»
Conv ———»

In the literature, some works propose to solve a simplified version of the object detection task; thus, reducing
computational complexity... but here is what we do:
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YOLOPhiNet
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YOLOPhinet

MOT15 MOT15

60 . s --e PhiNets (ours)
B MobileNetv2
50 e . ¢ --e EfficientNet

o

4 6 10 12 0 100 200 300 400 500

8
MMACC K params

Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
achieves power requirements in the order of 10 mW @ 52% mAP on VOC2012.

micromind/recipes/object_detection
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https://github.com/micromind-toolkit/micromind/tree/dev/recipes/object_detection

YOLOXiNet
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YOLOXiNet

mAP vs RAM mAP vs operations
XiNet-L XiNet-L
B (N A -
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Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
Achieves a reduction in the number of operations of 2x and a reduction in RAM
usage of 9x with respect to MCUNet, with the same performance. Achieves a
power consumption of around 20 mW @ 67% mAP on VOC2012.

micromind/recipes/object_detection
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https://github.com/micromind-toolkit/micromind/tree/dev/recipes/object_detection

Contrastive Language-Audio pretraining

¢ learns a similarity score between two modalities (audio and
text);
e can be exploited for zero-shot classification;

e makes the network very flexible wrt the applications scenario
they can be deployed to;
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Zero-shot classification

1. Contrastive Pretraining

.o Text
IPaddIlng in the water (= ¢

Text - audio pairs

Audio

[ =

Francesco Paissan (FBK)

A
Az

As

Ay

AT, AT AT,
ATy ATy AgTy

ATy AT, AsTy

ATy AnTs AT

2.Usep i for hot prediction in a
new dataset or task
Classes
Dog barking
Rain falling P
s Encoder
siren wailing.
Testing audio
Al —> o >
A AT AT AT V7
Dog barking

November 28, 2023 41/47



tinyCLAP

e exploits the learned similarity score to learn a more efficient
audio network (via a distillation process);
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https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP

tinyCLAP

e exploits the learned similarity score to learn a more efficient
audio network (via a distillation process);

e assumes the pre-trained text encoder does not need to be
deployed;

Francesco Paissan (FBK) November 28, 2023 42/47


https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP

tinyCLAP

e exploits the learned similarity score to learn a more efficient
audio network (via a distillation process);

e assumes the pre-trained text encoder does not need to be
deployed;

¢ achieves good performance-complexity tradeoff for ZS
classification, and state-of-the-art for a benchmark;

micromind/recipes/tinyCLAP
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https://github.com/micromind-toolkit/micromind/tree/dev/recipes/tinyCLAP

tinyCLAP: pe

Performance against complesity, US8k

Performance against complexity, TUT17

Performance against complesity, ESC50
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e follows a common power-law scaling behaviour;

Paissan and Farella, “tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models".
November 28, 2023
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tinyCLAP: performance

Performance against complesity, ESC50 Performance against complexity, TUT17 Performance against complesity, US8k
g

Disiled CLAP 0300 .
PhiNet.7

ecescsce

ESC50 75 Accuracy

0w 107 10

e follows a common power-law scaling behaviour;
e was not yet deployed on edge platforms (WIP);

Paissan and Farella, “tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models".
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tinyCLAP: performance

ainst complexity, ESC50 Performance against complexity, TUT17 Performance against complesity, US8k
O g

® Distiled CLAP
7

USk 75 Accur:

e follows a common power-law scaling behaviour;
e was not yet deployed on edge platforms (WIP);

® 94% reduction in parameter count wrt to original CLAP (from
82M to 4M), with a minor ZS accuracy drop (4% averaged on all
benchmarks);

Paissan and Farella, “tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models".
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micromind: tinyML research made simple

® not a startup or a research project, just an open-source
project for tinyML research;

e tries to provide the full research pipeline for model design,
development, and deployment;

Checkout the project on GitHub and leave a star!
Follow me on X @fpaissan- for updates.
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https://x.com/fpaissan_

Additional references to our works

Following is a list of references to works related to the topics discussed in the
presentation:

® Video processing: Ancilotto, Paissan, and Farella, “On the Role of Smart
Vision Sensors in Energy-Efficient Computer Vision at the Edge”; Paissan,
Ancilotto, and Farella, “PhiNets: A Scalable Backbone for Low-power Al at the
Edge”; Ancilotto, Paissan, and Farella, “XiNet: Efficient Neural Networks for
tinyML"

® Generative modeling: Ancilotto, Paissan, and Farella, “PhiNet-GAN: Bringing
real-time face swapping to embedded devices”; Ancilotto, Paissan, and
Farella, “XimSwap: many-to-many face swapping for TinyML"

® Audio processing: Paissan et al., “Scalable Neural Architectures for
End-to-End Environmental Sound Classification”; Brutti et al., “Optimizing
PhiNet architectures for the detection of urban sounds on low-end devices”;
Ali et al., “Scaling strategies for on-device low-complexity source separation
with Conv-Tasnet”; Paissan et al., “lImproving latency performance trade-off
in keyword spotting applications at the edge”

e Multimodal processing: Paissan and Farella, “tinyCLAP: Distilling Constrastive
Language-Audio Pretrained Models”
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The End

Questions? Comments?



[4 Ali, Mohamed Nabih et al. “Scaling strategies for on-device
low-complexity source separation with Conv-Tasnet”. In: ArXiv
abs/2303.03005 (2023). URL: https:
//api.semanticscholar.org/CorpusID:257364800.

[@ Ancilotto, A., F. Paissan, and Elisabetta Farella. “XiNet: Efficient
Neural Networks for tinyML". In: /CCV2023 (2023). URL:
https://openaccess.thecvf.com/content/ICCV2023/
papers/Ancilotto_XiNet_Efficient_Neural_ Networks_
for_tinyML_ICCV_2023_paper.pdf.

[3 Ancilotto, Alberto, Francesco Paissan, and Elisabetta Farella. “On
the Role of Smart Vision Sensors in Energy-Efficient Computer
Vision at the Edge”. In: 2022 |EEE International Conference on
Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops) (2022), pp. 497-502. URL:
https://api.semanticscholar.org/CorpusID:
248546511,

[} — .“PhiNet-GAN: Bringing real-time face swapping to
embedded devices". In: 2023 |EEE International Conference on
Pervasive Computing and Communications Workshops and other
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