

tinyCLAP : towards embedded foundational models

Francesco Paissan

Energy Efficient Embedded Digital Architectures Fondazione Bruno Kessler

Foundational models

"any model that is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks"

LLAMA: language model

Whisper: automatic speech recognition

Robust Speech Recognition via Large-Scale Weak Supervision

Alec Radford *1 Jong Wook Kim *1 Tao Xu¹ Greg Brockman¹ Christine McLeavey¹ Ilya Sutskever¹

CLIP: image retrieval

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford^{*1} Jong Wook Kim^{*1} Chris Hallacy¹ Aditya Ramesh¹ Gabriel Goh¹ Sandhini Agarwal¹ Girish Sastry¹ Amanda Askell¹ Pamela Mishkin¹ Jack Clark¹ Gretchen Krueger¹ Ilya Sutskever¹

Why is this relevant for tinyML?

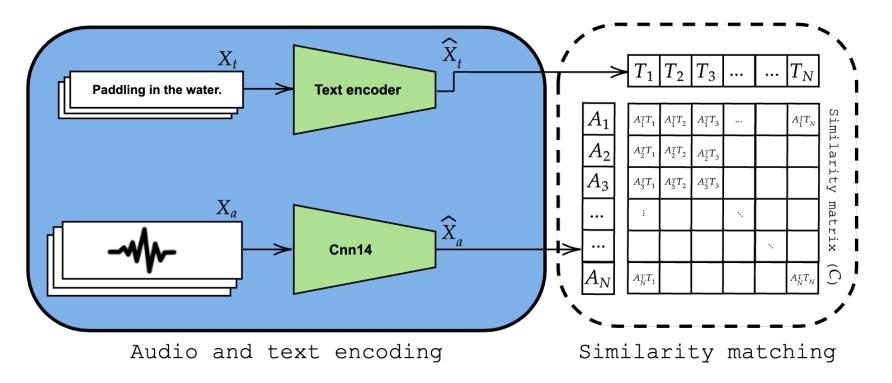
- we all like a good model, regardless of the task;
- tinyML deals with dynamic environments;

Domain adaptation

Class-incremental scenarios

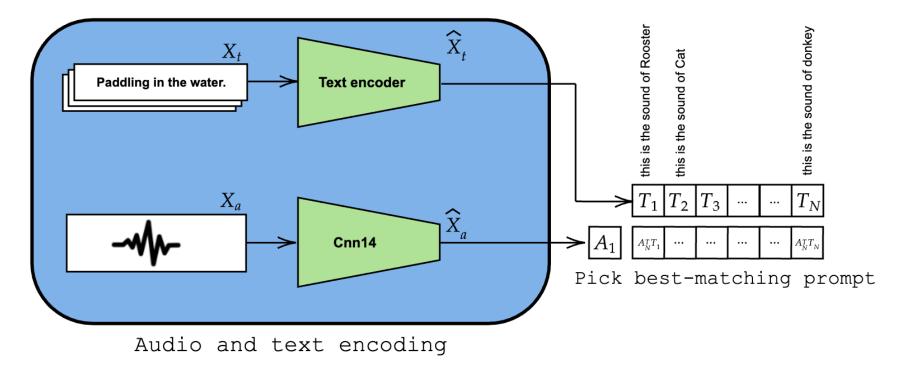
Contrastive Language-Audio Pretraining

- learns a similarity score between audio and text modalities;
- enables zero-shot classification;

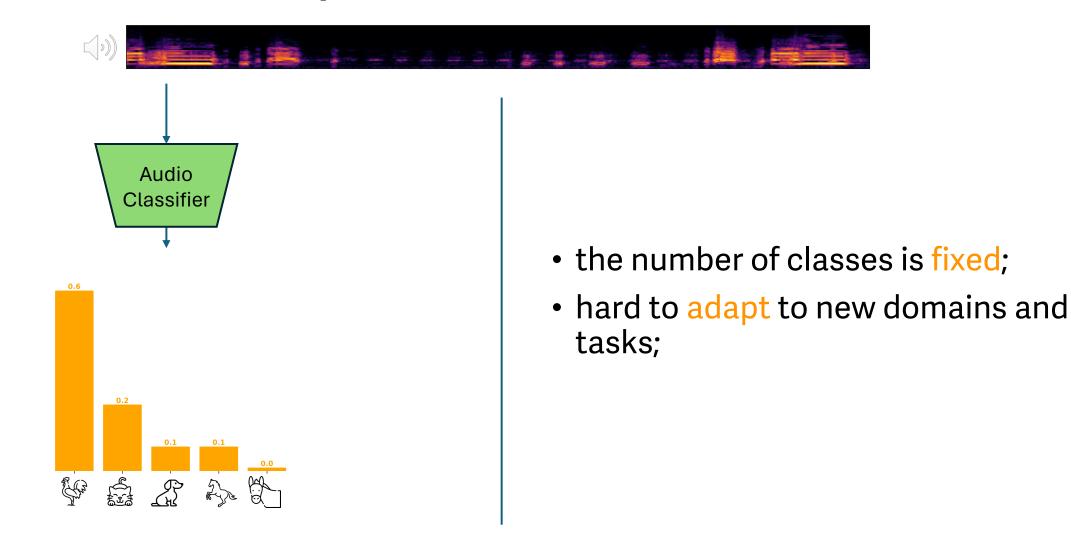


CLAP: how to do classification

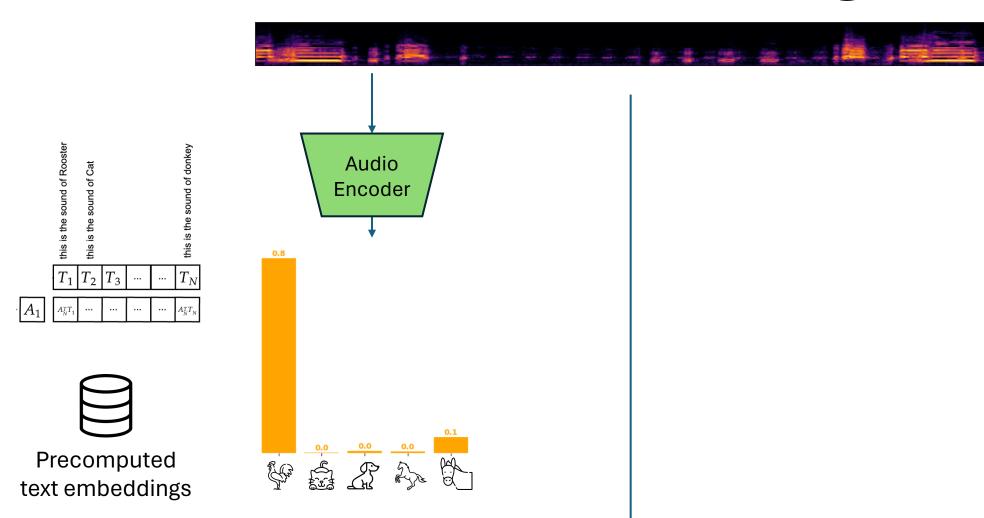
- to each audio input, assign the most similar text prompt;
- CLAP encoders can be finetuned to boost (supervised) performance;



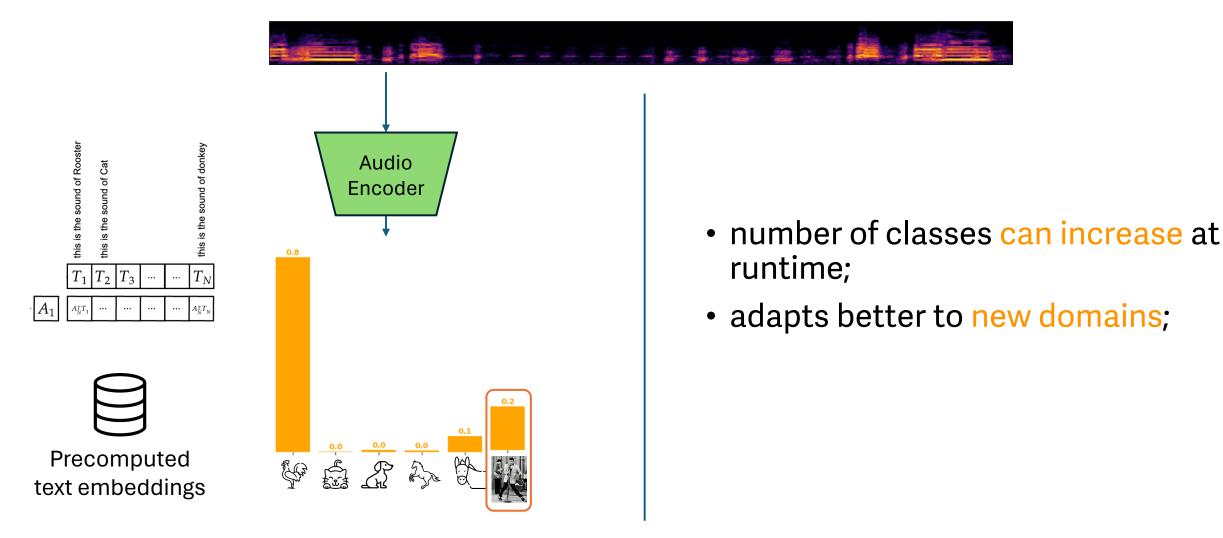
Traditional supervised classification



Zero-shot classification using CLAP

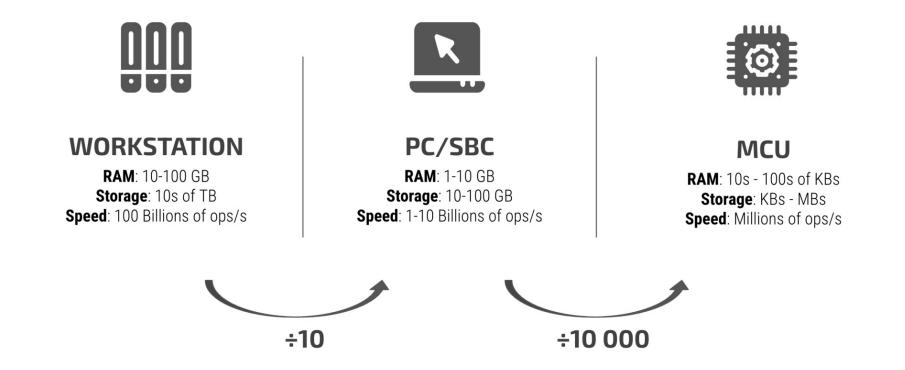


Zero-shot classification using CLAP



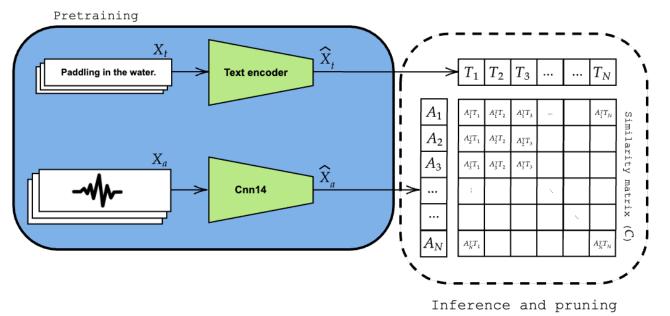
Challenges of bringing FM to the edge

- generally small models underfit big datasets;
- big models do not fit the requirements of edge processing;



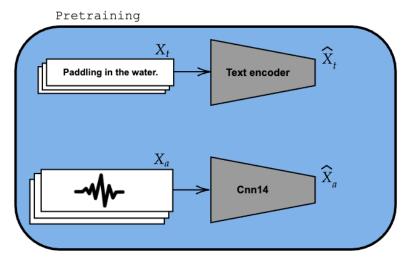
tinyCLAP to the rescue

- tackles underfitting by distilling from zero-shot classifiers;
- prunes the latent representations to increase control on requirements;



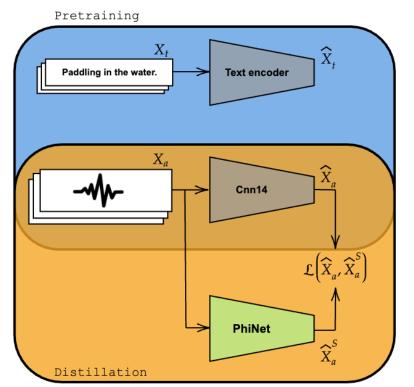
tinyCLAP to the rescue

- tackles underfitting by distilling from zero-shot classifiers;
- prunes the latent representations to increase control on requirements;



tinyCLAP to the rescue

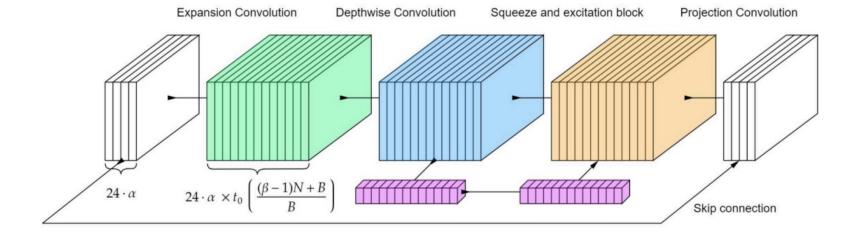
- tackles underfitting by distilling from zero-shot classifiers;
- prunes the latent representations to increase control on requirements;



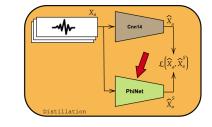
"PhiNet: a scalable backbone for low-power AI at the edge", Paissan, Ancilotto, Farella. 2021

PhiNet

- edge-oriented NN: a sequence of scalable inverted residual blocks;
- adapts to changing computational constraints using hardware-aware scaling;



from micromind.networks import PhiNet

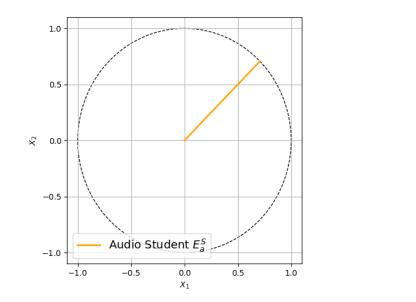


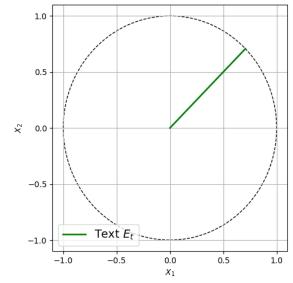
X_a $L(\hat{X}_a, \hat{X}_a^S)$ PhiNet \hat{X}_a^S \hat{X}_a^S

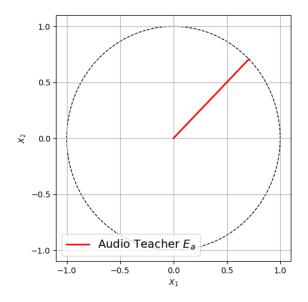
Which loss function is best?

- Symmetric CE, L2 norm, cosine distance... a lot of options;
- what if text is not available?

 $\cos(\mathbf{E}_a, \mathbf{E}_t) = 1 \Leftrightarrow \cos(\mathbf{E}_a^S, \mathbf{E}_t) = 1.$







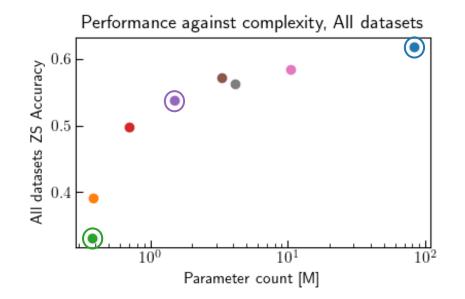
Validating the loss function

• experimental proof on self-distillation task;

						ZS Accuracy (%)		
Student model	${oldsymbol lpha}$	$oldsymbol{eta}$	t_0	\boldsymbol{N}	Params [M]	TUT17	US8k	ESC50
CNN14	1	/	/	/	82.8	28.9	72.1	82.3
CNN14-CLAP	1	/	/	1	82.8	29.6	73.2	82.9

This distillation strategy works!

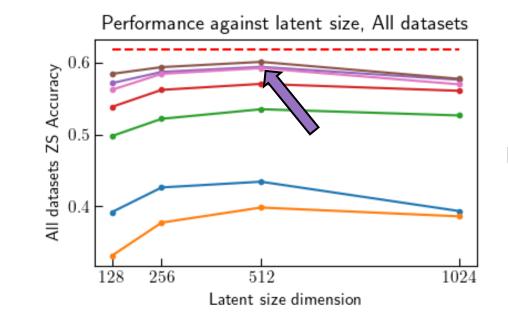
Efficient Zero-Shot classifiers



						ZS Accuracy (%)		
Student model	${oldsymbol lpha}$	$oldsymbol{eta}$	t_0	N	Params [M]	TUT17	US8k	ESC50
PhiNet_1	3.00	0.75	6	7	7.0	25.2	68.3	77.4
PhiNet_2	3.00	0.75	6	9	13.0	26.4	69.7	77.2
PhiNet_3	3.00	0.75	4	7	6.2	26.1	70.3	76.5
PhiNet_4	1.50	0.75	6	7	4.4	27.5	67.9	73.0
PhiNet_5	0.75	0.75	4	7	3.5	26.7	65.2	66.1
PhiNet_6	0.75	0.75	4	4	3.2	22.1	51.8	41.9
PhiNet_7	0.75	0.75	6	4	3.3	22.3	51.6	44.1
• CNN14	/	/	1	1	82.8	28.9	72.1	82.3
CNN14-CLAP	/	/	/	1	82.8	29.6	73.2	82.9

The impact of latent size

- changing the latent dimension does not decrease performance monotonically;
- enables fine-grained design based on computational requirements;



6M parameters, negligible performance drop wrt baseline

Conclusion

- we present a technique to learn efficient CLAP models without text supervision;
- we present the first efficient zero-shot audio classifier;
- scaling (down) foundational models can push the frontiers of what we can achieve at the edge.

tinyCLAP webpage and demo
https://fpaissan.github.io/tinyclapweb