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E3DA Unit
• AI at the very edge: artificial intelligence and advanced signal

processing on resource-constrained wireless sensing
platforms (MCU-based end-devices);

• Energy efficient wireless embedded systems: Wireless
Sensor Networks, Wearable electronics, Internet of Things;

• Application in HCI, smart cities (always-on and event-based
audio and vision sensing), rehabilitation, context-aware
scenarios and ambient intelligence.
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What is tinyML?

• a fast-growing subfield of machine learning targeting
on-device and near-sensor processing;

• includes hardware, algorithms and software capable of
performing data analytics at extremely low power
consumption;

• enables a variety of always-on use-cases and targets battery
operated and energy neutral devices;
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Why tinyML?

• Bandwidth reduction - reduction in amount of data that
needs to be transmitted;

• Low power consumption - many low power platforms, can be
powered by tiny solar panels;

• Infrastructure sustainability - lower and cheaper
maintenance;

• Privacy by Design - personal data never leaves the device and
is not stored;

• Robust, cheap, scalable, . . .
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Challenges of tinyML?
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Target platforms

microcontrollers, SBC,

neuromorphic processors, ...

small memory availability

(kB - MB)

low operations per second

(million ops/s)

low working memory

(kB - MB)

limited operations support

(generally optimized for CNNs)
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AlexNet

• ground-breaking CNN from 2012
[Krizhevsky et al., 2012] was the first
one to get good results on ImageNet;

• composed by a sequence of
convolutional blocks, with varying
configurations;

x

KxK Conv

ReLU

max-pool

h

Conv
block
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ResNet

• improves the performance by
enabling deeper networks via skip
connections
[Wightman et al., 2021];

• again, is composed by a sequence
of convolutional blocks, called
residual blocks;

• residual blocks follow a
wide/narrow/wide structure in the
number of channels;
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ResBlock variants

Wide-narrow-wide channel structure
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MobileNet

• tries to improve CNN efficiency by proposing the inverted
residual block[Howard et al., 2017];

• differently from a ResBlock, this uses a narrow/wide/narrow
structure in the number of channels;

• additionally, groups are used inside the convolutions to reduce
the computational complexity (depthwise convolutions);
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Inverted Convolutional Block

Wide-narrow-wide Narrow-wide-narrow
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Just for comparison...

As of MobilNetv3 (Nov. 2019)...
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EfficientNet

• focuses on how we ‘should’ be scaling CNNs to obtain optimal
performance[Tan and Le, 2019];

• introduces the concept of compound scaling (i.e. scaling all
dimensions is better than one dimension at a time);
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Shortcomings of mainstream CNNs

• these neural networks are too demanding to run on edge
devices and/or compromise performance too much trying to
fit;

• the convolutional block is not designed ad-hoc to exploit all
the capabilities of edge devices;

• compound scaling changes all the computational complexities
in a coupled way;
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Ideal CNN for edge processing

• a neural network that can scale to low computational
complexity (≤ 1 MB of FLASH, ≤ 1 MB of RAM);

• a convolutional block that is designed to exploit the available
resources maximally;

• a scaling strategy that allows fitting neural networks on
different edge platforms based on the applications scenarios;
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PhiNets

• based on inverted residual blocks, modified to decouple the
computational axes;

• designed and optimized for multimedia analytics at the edge
(audio-video);

• has three main hyperparameters (α, β, t0);
• controls RAM (t0), FLASH (α) and operations (α);

[Paissan et al., 2021]
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PhiNets convolutional block

Narrow-wide-narrow structure for the number of channels...
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The sequence of PhiNets conv blocks

Note: The expansion factor decreases with the increasing block number.
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Designing an optimized convolutional block

• PhiNets are designed based on indirect efficiency metrics,
thus could be an ideal version of edge CNNs;

• what happens if we try to break free of the common standards
for convolutional block design and investigate from first
principles?

Let’s see...
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Formal definition of efficiency

Definition 2.1
We assessed the actual efficiency of each operator (ηop) by
calculating the ratio between the energy needed for a standard
convolution (ES) and the energy of the chosen operator (Eop) to
perform an equivalent number of MACs.

ηop =
ES

Eop

Francesco Paissan (FBK) October 20, 2023 23 / 44



Empirical evaluation of CNN operators...

• this suggests that standard convolutions (AlexNet-style) are, on
average, more efficient than other variants;

• but how do we exploit them with low parameter memory?
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XiNet convolutional block

Wide-narrow-wide structure for channels, and much more...
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Skip connections and attention block
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Skip connections and attention block
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XiNet

• composed by a sequence of these convolutional blocks;

• similarly to PhiNets, its computational complexity is controlled
using three hyperparameters (α, γ, β);

• designed based on the empirical benchmark of the different
operators to be very efficient;

[Ancilotto et al., 2023c]

Francesco Paissan (FBK) October 20, 2023 27 / 44



XiNet

• composed by a sequence of these convolutional blocks;
• similarly to PhiNets, its computational complexity is controlled

using three hyperparameters (α, γ, β);

• designed based on the empirical benchmark of the different
operators to be very efficient;

[Ancilotto et al., 2023c]

Francesco Paissan (FBK) October 20, 2023 27 / 44



XiNet

• composed by a sequence of these convolutional blocks;
• similarly to PhiNets, its computational complexity is controlled

using three hyperparameters (α, γ, β);
• designed based on the empirical benchmark of the different

operators to be very efficient;

[Ancilotto et al., 2023c]

Francesco Paissan (FBK) October 20, 2023 27 / 44



Hardware-aware scaling

• scaling strategy that exploits the advanced PhiNets and XiNet
architectures;

• helps deploy CNNs on a wide variety of edge platforms via its
one-shot network optimization procedure;

• inverts the mapping between computational complexity
and hyperparameters so that it can be solved with a
mathematical programming toolkit for specific computational
requirements;
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You Only Look Once (YOLO)
• originally proposed as an object detection pipeline;
• well known for its good performance/complexity tradeoff;
• mainly related to its ability to detect objects using only one

inference step (no region proposal networks, etc...);
• recently extended to support image segmentation, keypoint

detection/pose estimation;
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YOLO Architecture
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YOLOPhinet

Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
achieves power requirements in the order of 10 mW.
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YOLOXiNet

Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM;
Achieves a reduction in the number of operations of 2× and a reduction in RAM
usage of 9× with respect to MCUNet, with the same performance.
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Contrastive Language-Audio pretraining

• learns a similarity score between two modalities (audio and
text);

• can be exploited for zero-shot classification;
• makes the network very flexible wrt the applications scenario

they can be deployed to;
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Zero-shot classification
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tinyCLAP

• exploits the learned similarity score to learn a more efficient
audio network (via a distillation process);

• assumes the pre-trained text encoder does not need to be
deployed;

• achieves good performance-complexity tradeoff for ZS
classification, and state-of-the-art for a benchmark;
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tinyCLAP: performance

• follows a common power-law scaling behaviour;

• was not yet deployed on edge platforms (WIP);
• uses only 6% of original CLAP parameters, with a minor ZS

accuracy drop of only 4% averaged on all benchmarks;
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Additional references to our works

Following is a list of references to works related to the topics discussed in the
presentation:

• Video processing:
[Ancilotto et al., 2022, Paissan et al., 2021, Ancilotto et al., 2023c]

• Generative modeling: [Ancilotto et al., 2023a, Ancilotto et al., 2023b]
• Audio processing:

[Paissan et al., 2022, Brutti et al., 2022, Ali et al., 2023, Paissan et al., 2023]
• Multimodal processing: tinyCLAP (under review)
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The End
Questions? Comments?
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