An introduction to tinyML

Francesco Paissan

Energy Efficient Embedded Digital Architectures Fondazione Bruno Kessler

fpaissan@fbk.eu

February 20, 2024

-

Presentation Overview

1 Introduction

The Five (-1) Ws of tinyML Challenges of tinyML

2 Building blocks

Overview Scaling properties

(Reasonably) good convolutional designs

Convolutional blocks tinyML-first CNNs Hardware-Aware Scaling

4 Some applications...

YOLO-based Efficient Continual Learning Zero-shot audio classification micromind

Outline

Introduction

The Five (-1) Ws of tinyML Challenges of tinyML

Ø Building blocks

Overview Scaling properties

(Reasonably) good convolutional designs

Convolutional blocks tinyML-first CNNs Hardware-Aware Scaling

Ose applications...

YOLO-based Efficient Continual Learning Zero-shot audio classification micromind

What?

• a fast-growing subfield of machine learning targeting **on-device** and **near-sensor processing**;

What?

• a fast-growing subfield of machine learning targeting **on-device** and **near-sensor processing**;

Why?

- many practical **benefits** (e.g. bandwidth reduction, infrastructure sustainability, scalability);
- privacy by design: enable processing on-device, thus sensitive data is never leaked;

What?

• a fast-growing subfield of machine learning targeting **on-device** and **near-sensor processing**;

Why?

- many practical **benefits** (e.g. bandwidth reduction, infrastructure sustainability, scalability);
- **privacy** by design: enable processing on-device, thus sensitive data is never leaked;

When?

• not clear, it was a continuous process, sometimes driven by necessity...

Who?

(tiny)AI researchers:

- come up with novel ML algorithms to compress and simplify NN model;
- generally approach tinyML as a ML problem;

Who?

(tiny)AI researchers:

- come up with novel ML algorithms to compress and simplify NN model;
- generally approach tinyML as a ML problem;

(AI)Embedded engineers:

- design custom NN accelerator and neuromorphic processors to speed up NN inference;
- approach tinyML as an engineering problem;

Who?

(tiny)AI researchers:

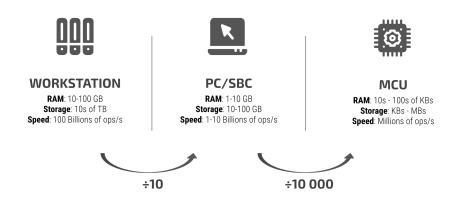
- come up with novel ML algorithms to compress and simplify NN model;
- generally approach tinyML as a ML problem;

(AI)Embedded engineers:

- design custom NN accelerator and neuromorphic processors to speed up NN inference;
- approach tinyML as an engineering problem;

But there's stuff also in the gray area...

Challenges of tinyML?



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

microcontrollers, SBC,

neuromorphic processors, ...

(kB - MB)

microcontrollers, SBC,

neuromorphic processors, ...

(kB - MB)

few operations per second

(million ops/s)

microcontrollers, SBC,

neuromorphic processors, ...

(kB - MB)

microcontrollers, SBC,

small working memory

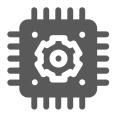
neuromorphic processors, ...

(kB - MB)

few operations per second

(million ops/s)

(kB - MB)



few operations per second

(million ops/s)

microcontrollers, SBC,

small working memory

neuromorphic processors, ...

limited operations support

(generally optimized for CNNs)

(kB - MB)

э

ヨト・イヨト

Outline

Introduction

The Five (-1) Ws of tinyML Challenges of tinyML

2 Building blocks

Overview Scaling properties

(Reasonably) good convolutional designs

Convolutional blocks tinyML-first CNNs Hardware-Aware Scaling

Ose applications...

YOLO-based Efficient Continual Learning Zero-shot audio classification micromind It (almost) always boils down to ...

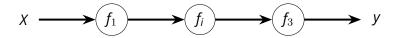
$$y = \mathcal{F}(X) = (f_N \circ f_{N-1} \circ \dots \circ f_1)(X)$$

where $\mathcal{F}: \mathcal{D} \to \mathcal{Y}$, with \mathcal{D} , and \mathcal{Y} are the input and output domains.

It (almost) always boils down to ...

$$y = \mathcal{F}(X) = (f_N \circ f_{N-1} \circ \dots \circ f_1)(X)$$

where $\mathcal{F}: \mathcal{D} \to \mathcal{Y}$, with \mathcal{D} , and \mathcal{Y} are the input and output domains.



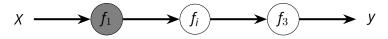
- Linear: $f_i(z) = \mathbf{W}\mathbf{z} + \mathbf{b}$
- Convolution: $f_i(z) = \mathbf{z} * \mathbf{W} + \mathbf{b}$

• BatchNorm:
$$f_i(z) = \frac{z - E(z)}{\sqrt{Var(z) + \epsilon}} \alpha + \beta$$

• Many other primitives and tweaks to improve performance...

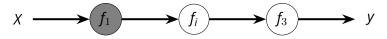
Let's create a use-case to get an intuition on different primitives.

Let's create a use-case to get an intuition on different primitives.

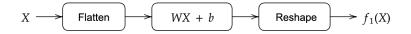


and let's assume $X \in \mathbb{R}^{3 \times 64 \times 64}$ and $f_1(X) \in \mathbb{R}^{16 \times 64 \times 64}$.

Let's create a use-case to get an intuition on different primitives.



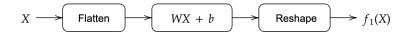
and let's assume $X \in \mathbb{R}^{3 \times 64 \times 64}$ and $f_1(X) \in \mathbb{R}^{16 \times 64 \times 64}$. Let's see what happens...



3

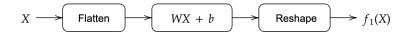
<ロト <問ト < 国ト < 国ト

A very bad idea



- Params: 805M
- Multiply-adds: 805M
- Heavily affected by shifts and rotations in the input space;
- Underperforms on real-life benchmarks;

A very bad idea



- Params: 805M
- Multiply-adds: 805M
- Heavily affected by shifts and rotations in the input space;
- Underperforms on real-life benchmarks;

12 / 55

$$X \longrightarrow W * X + b \longrightarrow f_1(X)$$

Ξ.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$$X \longrightarrow W * X + b \longrightarrow f_1(X)$$

- Params: 480
- Multiply-adds: 1.84M

$$Params = c_{in}c_{out}k^2 + c_{out} | MAC = HW(c_{in}c_{out}k^2 + c_{out})$$

æ

Pointwise Convolutions

$$X \longrightarrow W * X + b \longrightarrow f_1(X)$$

- Params: 96
- Multiply-adds: 0.28M

 $Params = c_{in}c_{out} + c_{out} | MAC = HW(c_{in}c_{out} + c_{out})$

Depthwise Convolutions

$$X \longrightarrow W * X + b \longrightarrow f_1(X)$$

- Params: 180
- Multiply-adds: 0.61M

$$Params = c_{in}k^2 + c_{out} | MAC = HW(c_{in}k^2 + c_{out})$$

ヨト・イヨト

Image: Image:

æ

Outline

Introduction

The Five (-1) Ws of tinyML Challenges of tinyML

Ø Building blocks

Overview Scaling properties

(Reasonably) good convolutional designs

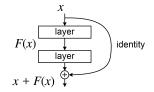
Convolutional blocks tinyML-first CNNs Hardware-Aware Scaling

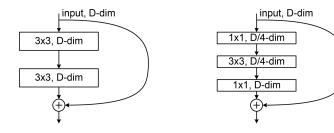
Ose applications...

YOLO-based Efficient Continual Learning Zero-shot audio classification micromind

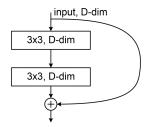
э

- creates a direct connection between input and output of the convolutional block;
- residual blocks follow a wide/narrow/wide structure in the number of channels;
- improves the performance by enabling deeper networks via skip connections Wightman, Touvron, and J'egou, "ResNet strikes back: An improved training procedure in timm";

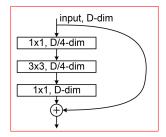




◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ の Q @



Wide-narrow-wide channel structure



3

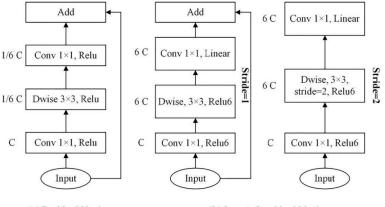
イロト イヨト イヨト イヨト

 differently from a ResBlock, this uses a narrow/wide/narrow structure in the number of channels;

- differently from a ResBlock, this uses a narrow/wide/narrow structure in the number of channels;
- additionally, groups are used inside the convolutions to reduce the computational complexity (depthwise convolutions);

- differently from a ResBlock, this uses a narrow/wide/narrow structure in the number of channels;
- additionally, groups are used inside the convolutions to reduce the computational complexity (depthwise convolutions);
- generally used in parameter-efficient networks;

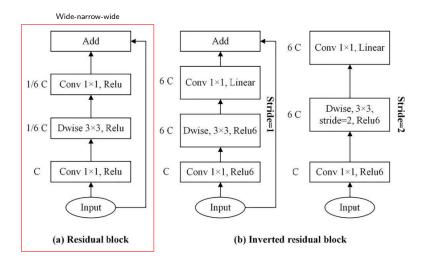
Inverted Convolutional Block



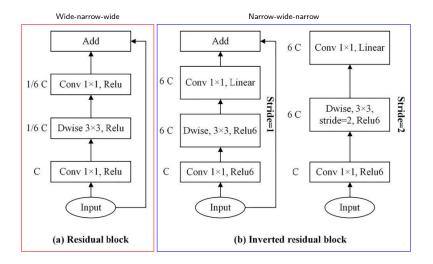
(a) Residual block

(b) Inverted residual block

Inverted Convolutional Block



Inverted Convolutional Block



э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

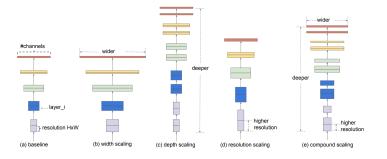
- Residual blocks: ResNet, UNets, and many more...
- Inverted residual blocks: MobileNet, EfficientNet, PhiNets, MCUNet, and many more...

Where are these blocks used?

- Residual blocks: ResNet, UNets, and many more...
- Inverted residual blocks: MobileNet, EfficientNet, PhiNets, MCUNet, and many more...

Compound scaling

- focuses on how we 'should' be scaling CNNs to obtain optimal performanceTan and Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks";
- introduces the concept of compound scaling (i.e. scaling all dimensions is better than one dimension at a time);



• **too demanding** to run on edge devices and/or compromise performance too much trying to fit;

- **too demanding** to run on edge devices and/or compromise performance too much trying to fit;
- edge devices have different capabilities some convolutional blocks cannot exploit;

- **too demanding** to run on edge devices and/or compromise performance too much trying to fit;
- edge devices have different capabilities some convolutional blocks cannot exploit;
- compound scaling changes all the computational complexities in a coupled way;

- a neural network that can scale to low computational complexity ($\leq 1 \text{ MB}$ of FLASH, $\leq 1 \text{ MB}$ of RAM);
- a convolutional block that is designed to exploit the available resources maximally;
- a scaling strategy that allows fitting neural networks on **different** edge platforms based on the applications scenarios;

 based on inverted residual blocks, modified to decouple the computational resources;

Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power Ab at the Edge". 🚊 🕨 🦉 🖉 🔗 🛇

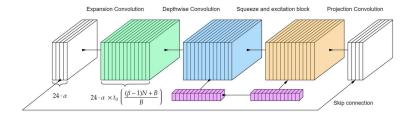
- based on inverted residual blocks, modified to decouple the computational resources;
- designed and optimized for multimedia analytics at the edge (audio-video);

Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power Ab at the Edge". 🖻 🕨 🦉 🖉 🔗 🛇

- based on inverted residual blocks, modified to decouple the computational resources;
- designed and optimized for multimedia analytics at the edge (audio-video);
- controls RAM (t_0), FLASH (β) and operations (α) using three hyperparamters;

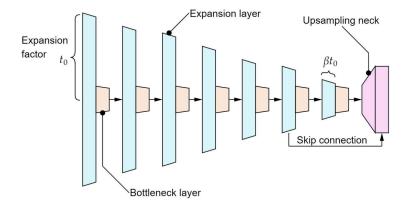
Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power(Ablat the Edge". 🖹 🕨 🦉 🔊 🔿

Narrow-wide-narrow structure for the number of channels...



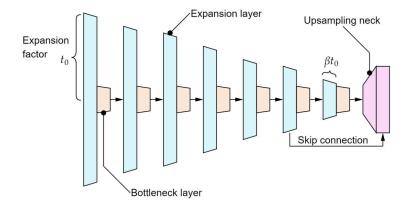
Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power Ab at the Edge". 🖻 🕨 🦉 🖉 🔗 🛇

The sequence of PhiNets conv blocks



Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power At at the Edge". 📃 🕨 🚊 🔊 🔾

The sequence of PhiNets conv blocks



from micromind.networks import PhiNet

Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power At at the 🗄 dge". 📃 🕨 4 🚊 🕨 🚊 🛷 🔍

• PhiNets are designed based on **indirect efficiency metrics**, thus could be an ideal version of edge CNNs;

- PhiNets are designed based on **indirect efficiency metrics**, thus could be an ideal version of edge CNNs;
- what happens if we try to break free of the common standards for convolutional block design and investigate from first principles?

- PhiNets are designed based on **indirect efficiency metrics**, thus could be an ideal version of edge CNNs;
- what happens if we try to break free of the common standards for convolutional block design and investigate from first principles?

Let's see...

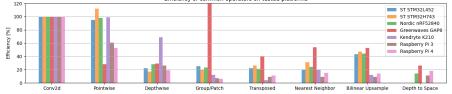
Definition 3.1

We assessed the actual efficiency of each operator (η_{op}) by calculating the ratio between the energy needed for a standard convolution (E_S) and the energy of the chosen operator (E_{op}) to perform an equivalent number of MACs.

$$\eta_{op} = \frac{E_S}{E_{op}}$$

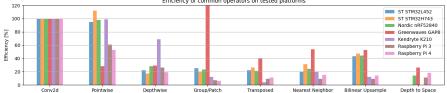
Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML". 🗆 🕨 🔄 🖓 🔍

Efficiency of common operators on tested platforms



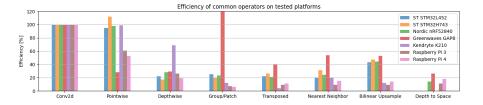
ヨト・イヨト

э



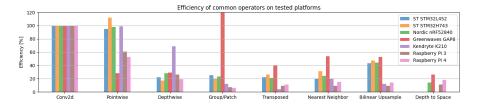
Efficiency of common operators on tested platforms

Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML" => < ->> ∃ → э



 this suggests that standard convolutions (AlexNet-style) are, on average, more efficient than other variants;

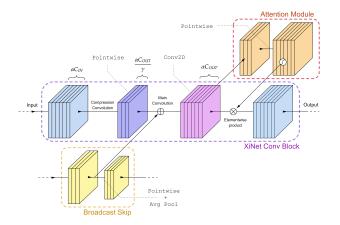
Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML" = > < 🗇 > < 🗄 > < 🛓 🔊 🤇



- this suggests that standard convolutions (AlexNet-style) are, on average, more efficient than other variants;
- but how do we exploit them with low parameter memory?

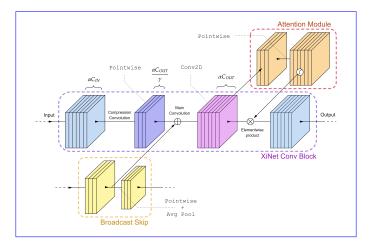
Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML" = D + 4 🗇 + 4 🖻 + 4 🚊 + 4 🚊 + 3 🚊 - 🔗 Q

XiNet convolutional block



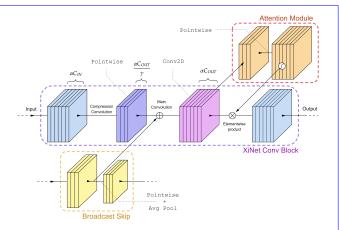
<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

XiNet convolutional block



<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

XiNet convolutional block



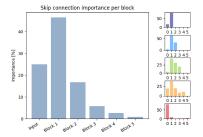
Wide-narrow-wide structure for channels, and much more ...

Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML" = > + + = > + + = > + + = >

Francesco Paissan (FBK)

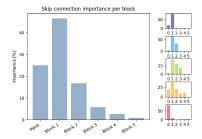
э

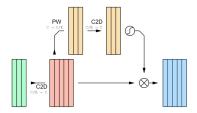
Skip connections and attention block



Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML", 🗆 🕨 🖃 🖉 🔍 🔍

Skip connections and attention block





Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML". 🗆 🕨 👍 🕨 👍 🖉 🖉 🦿 🤶

composed by a sequence of XiNet convolutional blocks;

- composed by a sequence of XiNet convolutional blocks;
- similarly to PhiNets, its computational complexity is controlled using three hyperparameters (α, γ, β);

- composed by a sequence of XiNet convolutional blocks;
- similarly to PhiNets, its computational complexity is controlled using three hyperparameters (α, γ, β);
- designed based on the **empirical benchmark** of the different operators to be very efficient;

Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML": 🗆 🕨 🔄 🖓 🔍

- composed by a sequence of XiNet convolutional blocks;
- similarly to PhiNets, its computational complexity is controlled using three hyperparameters (α, γ, β);
- designed based on the **empirical benchmark** of the different operators to be very efficient;

from micromind.networks import XiNet

Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML"/ 🗆 🕨 👍 🕨 🛓 🖉 🔊 🔍

- scaling strategy that exploits the advanced PhiNets and XiNet architectures;
- helps deploy CNNs on a wide variety of edge platforms via its one-shot network optimization procedure;
- inverts the mapping between computational complexity and hyperparameters so that it can be solved with a mathematical programming toolkit for specific computational requirements;

Outline

Introduction

The Five (-1) Ws of tinyML Challenges of tinyML

Ø Building blocks

Overview Scaling properties

(Reasonably) good convolutional designs

Convolutional blocks tinyML-first CNNs Hardware-Aware Scaling

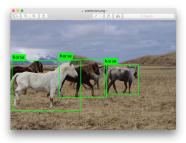
4 Some applications...

YOLO-based Efficient Continual Learning Zero-shot audio classification micromind

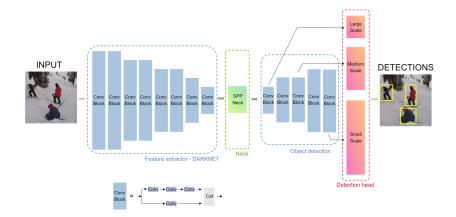
э

You Only Look Once (YOLO)

- originally proposed as an object detection pipeline;
- well known for its good performance/complexity tradeoff;
- mainly related to its ability to detect objects using only one inference step (no region proposal networks, etc...);
- recently extended to support image segmentation, keypoint detection/pose estimation;



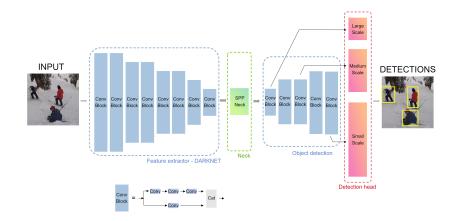
YOLO Architecture



イロト イヨト イヨト イヨト

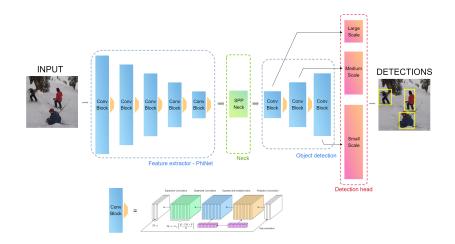
æ

YOLO Architecture



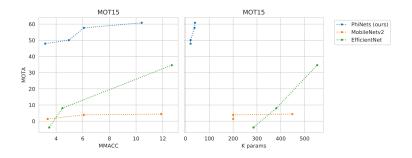
In the literature, some works propose to solve a simplified version of the object detection task; thus, reducing computational complexity... but here is what we do:

YOLOPhiNet



æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・



Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM; achieves **power requirements in the order of** 10 mW @ 52% mAP on VOC2012.

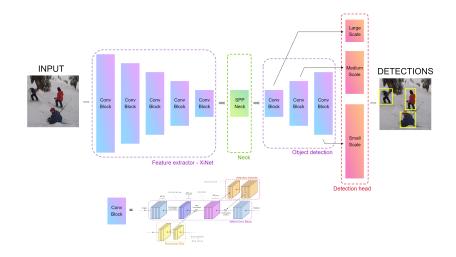
micromind/recipes/object_detection

э

∃ ► < ∃ ►</p>

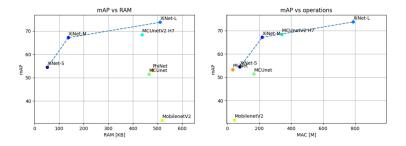
• • • • • • • •

YOLOXiNet



3

< □ > < □ > < □ > < □ > < □ >



Deployed on an Arm-Cortex M7 MCU with 2 MB of internal Flash and 1 MB of RAM; Achieves a reduction in the **number of operations of 2**× and a reduction in **RAM usage of 9**× with respect to MCUNet, with the same performance. Achieves a power consumption of around 20 mW @ 67% mAP on VOC2012.

micromind/recipes/object_detection

ヨト・イヨト

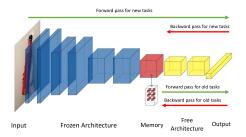
Class-Incremental Continual Learning

Figure: Samples of tasks from Split-CORe50

Pretty typical continual learning setting:

- stream: adding two classes for each task;
- we want to learn new classes, and not forget old ones...

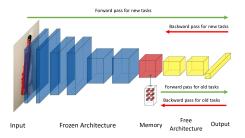
An efficient CL strategy based on the replay of latent activations from previous taks.



ヨト・イヨト

Image: A matrix

An efficient CL strategy based on the replay of latent activations from previous taks.



Of course we replace the backbone with a PhiNet, and...

Model	CIFAR10				CORe50			
	0.5 MB		2 MB		0.5 MB		2 MB	
	Avg. Acc. [%]	MACs						
PhiNet A	50.25	3,050	72.49	3,050	51.42	3,050	70.20	3,050
PhiNet B	48.48	3,450	63.83	3,450	47.19	3,450	63.73	3,450
PhiNet B ₉	51.00	3,450	66.45	3,450	48.51	3,450	65.10	3,450
PhiNet C	47.96	4,650	69.58	4,650	46.95	4,650	65.65	4,650
MobileNetV1	32.29	51,200	32.15	51,200	23.11	51,200	23.24	51,200
MobileNetV2	37.01	43,092,800	61.21	43,092,800	46.51	20,085,760	68.99	43,092,800
0.75 MobileNetV2	46.53	28,089,840	65.18	28,089,840	45.93	28,089,840	66.26	28,089,840

TABLE II: Best results on CIFAR-10 and CORe50 for different models with a fixed replay memory of 0.5MB and 2MB.

PhiNet is much more replay-efficient wrt to MobileNet, achieving a +6% average accuracy over the tasks, with only $\ll 0.1\%$ of the MACs for the update.

Tremonti et al., "An empirical evaluation of tinyML architectures for Class-Incremental Continual Learning" 👘 🚊 🛷 🔍

Francesco Paissan (FBK)

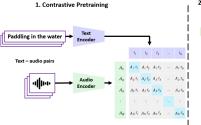
Ξ.

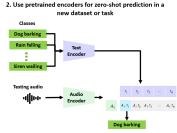
・ロト ・ 日 ト ・ 日 ト ・ 日 ト

3

- learns a similarity score between two modalities (audio and text);
- can be exploited for zero-shot classification;
- makes the network very flexible wrt the applications scenario they can be deployed to;

Zero-shot classification





э

イロト イヨト イヨト イヨト

 exploits the learned similarity score to learn a more efficient audio network (via a distillation process);

э

∃ ► < ∃ ►</p>

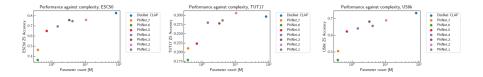
Image: A matrix

- exploits the learned similarity score to learn a more efficient audio network (via a distillation process);
- assumes the pre-trained text encoder does not need to be deployed;

- exploits the learned similarity score to learn a more efficient audio network (via a distillation process);
- assumes the pre-trained text encoder does not need to be deployed;
- achieves good performance-complexity tradeoff for ZS classification, and state-of-the-art for a benchmark;

micromind/recipes/tinyCLAP

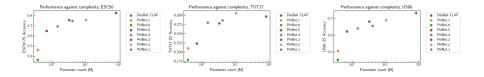
tinyCLAP: performance



follows a common power-law scaling behaviour;

Paissan and Farella, "tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models": 📢 🚊 🕨 🚊 🗸

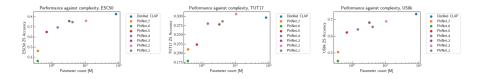
tinyCLAP: performance



- follows a common power-law scaling behaviour;
- was not yet deployed on edge platforms (WIP);

Paissan and Farella, "tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models" 🗸 🗧 🕨 🤄 🥏 🖉

tinyCLAP: performance



- follows a common power-law scaling behaviour;
- was not yet deployed on edge platforms (WIP);
- 94% reduction in parameter count wrt to original CLAP (from 82M to 4M), with a minor ZS accuracy drop (4% averaged on all benchmarks);

50 / 55

Paissan and Farella, "tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models" 🗤 🗧 🕨 🤘 🚍 🕨

- not a startup or a research project, just an open-source project for tinyML research;
- tries to provide the **full research pipeline** for model design, development, and deployment;

$\begin{array}{c} \mbox{Checkout the project on GitHub and leave a star!} \\ \mbox{Follow me on X @fpaissan_ for updates.} \end{array}$

We welcome contributions on the following topics:

- anything related to interpretability for audio and speech (evaluation, post-hoc techniques, glass-box models);
- deadline: 4th March 2024 (non IEEE track);
- https://xai-sa-workshop.github.io

Following is a list of references to works related to the topics discussed in the presentation:

- Video processing: Ancilotto, Paissan, and Farella, "On the Role of Smart Vision Sensors in Energy-Efficient Computer Vision at the Edge"; Paissan, Ancilotto, and Farella, "PhiNets: A Scalable Backbone for Low-power AI at the Edge"; Ancilotto, Paissan, and Farella, "XiNet: Efficient Neural Networks for tinyML"
- Generative modeling: Ancilotto, Paissan, and Farella, "PhiNet-GAN: Bringing real-time face swapping to embedded devices"; Ancilotto, Paissan, and Farella, "XimSwap: many-to-many face swapping for TinyML"
- Audio processing: Paissan et al., "Scalable Neural Architectures for End-to-End Environmental Sound Classification"; Brutti et al., "Optimizing PhiNet architectures for the detection of urban sounds on low-end devices"; Ali et al., "Scaling strategies for on-device low-complexity source separation with Conv-Tasnet"; Paissan et al., "Improving latency performance trade-off in keyword spotting applications at the edge"
- Multimodal processing: Paissan and Farella, "tinyCLAP: Distilling Constrastive Language-Audio Pretrained Models"

э

The End

Questions? Comments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Ali, Mohamed Nabih et al. "Scaling strategies for on-device low-complexity source separation with Conv-Tasnet". In: *ArXiv* abs/2303.03005 (2023). URL:

https://api.semanticscholar.org/CorpusID:257364800.

Ancilotto, A., F. Paissan, and Elisabetta Farella. "XiNet: Efficient Neural Networks for tinyML". In: ICCV2023 (2023). URL: https://openaccess.thecvf.com/content/ICCV2023/papers/ Ancilotto_XiNet_Efficient_Neural_Networks_for_tinyML_

ICCV_2023_paper.pdf.

Ancilotto, Alberto, Francesco Paissan, and Elisabetta Farella. "On the Role of Smart Vision Sensors in Energy-Efficient Computer Vision at the Edge". In: 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (2022), pp. 497–502. URL: https://api.semanticscholar.org/CorpusID:248546511.
— ."PhiNet-GAN: Bringing real-time face swapping to embedded devices". In: 2023 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) (2023), pp. 677–682, URL: